Document Type

Article

Abstract

Peripheral quantitative computed tomography (pQCT) has recently expanded to quantifying skeletal muscle, however its validity to determine muscle cross‐sectional area (mCSA) compared to magnetic resonance imaging (MRI) is unknown. Eleven male participants (age: 22 ± 3 y) underwent pQCT and MRI dual‐leg mid‐thigh imaging before (PRE) and after (POST) 6 weeks of resistance training for quantification of mid‐thigh mCSA and change in mCSA. mCSA agreement at both time points and absolute change in mCSA across time was assessed using Bland‐ Altman plots for mean bias and 95% limits of agreement (LOA), as well as Lin's concordance correlation coefficients (CCC). Both pQCT and MRI mCSA increased following 6 weeks of resistance training (ΔmCSApQCT: 6.7 ± 5.4 cm2, p < 0.001; ΔmCSAMRI: 6.0 ± 6.4 cm2, p < 0.001). Importantly, the change in mCSA was not different between methods (p = 0.39). Bland‐Altman analysis revealed a small mean bias (1.10 cm2, LOA: −6.09, 8.29 cm2) where pQCT tended to overestimate mCSA relative to MRI when comparing images at a single time point. Concordance between pQCT and MRI mCSA at PRE and POST was excellent yielding a CCC of 0.982. For detecting changes in mCSA, Bland‐Altman analysis revealed excellent agreement between pQCT and MRI (mean bias: −0.73 cm2, LOA: −8.37, 6.91 cm2). Finally, there was excellent concordance between pQCT and MRI mCSA change scores (CCC = 0.779). Relative to MRI, pQCT imaging is a valid technique for measuring both midthigh mCSA at a single time point and mCSA changes following a resistance training intervention.

DOI

DOI: 10.1111/cpf.12885

Publication Date

4-2024

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Kinesiology Commons

Share

COinS