
Lindenwood University Lindenwood University

Digital Commons@Lindenwood University Digital Commons@Lindenwood University

Theses Theses & Dissertations

1992

Program Maintenance and Code Reuse: Object Oriented Versus Program Maintenance and Code Reuse: Object Oriented Versus

Procedure Oriented Programming Procedure Oriented Programming

Beiramali Moradi

Follow this and additional works at: https://digitalcommons.lindenwood.edu/theses

 Part of the Computer Sciences Commons

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/theses
https://digitalcommons.lindenwood.edu/theses-dissertations
https://digitalcommons.lindenwood.edu/theses?utm_source=digitalcommons.lindenwood.edu%2Ftheses%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lindenwood.edu%2Ftheses%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages

PROGRAM MAINTENANCE AND CODE REUSE
Object Oriented Versus Procedure Oriented Programming

Beiramali Moradi,
B.S. Computer Science

An Abstract Presented to the Faculty of the Graduate School
of Lindenwood College in Partial Fulfillment of the

Requirements for the Degree of
Master of Science

Management Information Systems

1992

ABSTRACT

T/2,,,.,,
,11,~,,,
I qq2,

The purpose of this thesis is to address the problem of the increasing

cost of program maintenance in the data processing world. On average,

programmers today spend 60% of their time in program maintenance and

that figure is increasing at an estimated rate of 1 % each year. The cost is

staggering and almost every business would like to find ways of

reducing maintenance costs. One way to help reduce maintenance and

development costs is to improve code reusability. Both maintenance

programming and code reusability are the focus of this thesis.

Today's most commonly used programming language style is

procedure oriented programming (POP). At nearly every university in

the United States, POP is a required course for both scientific and

business computer related degrees. Most businesses use POP as the

chosen programming language style. Those data processing shops trying

to reduce maintenance costs are usually trying to improve techniques

used in POP rather than researching new language styles such as object

oriented programming (OOP).

OOP requires fewer function names to remember and coordinate

than POP requires. A POP language like COBOL, treats its functions as

paragraphs or callable sub-programs and each must have a unique name.

OOP allows method names to be reused from one class to another and

even within the same class. The system takes care of determining which

1

...

method should be used. Therefore, OOP is much better at providing

fewer functions to remember and coordinate since the system does much

of that work for the programmer.

POP languages such as COBOL, have no features or techniques to

help prevent accidental modifications. OOP helps prevent them by

encapsulating classes to limit access to data and methods. Accidental

modifications are not totally eliminated with OOP but they can be

significantly reduced which helps reduce maintenance costs.

Error detection is difficult in COBOL since it allows all procedures

within the program to access any of the data in the program. In OOP, a

language feature called encapsulation can be applied to a class to help

detect errors. Programmers can spend a lot of time trying to detect errors

in a program. Therefore, OOP is able lo reduce maintenance costs by

helping the programmer to quickly find the errors.

The POP language of COBOL has no specific language feature to help

with change control. Encapsulation, the same OOP features that helps

detect errors can also help limit the impact of a change to a program.

Therefore, OOP is better at reducing the amount of time spent in making

maintenance changes.

2

1'01' languages allow for code reuse by providing the ability lo copy

source code from a library into a program or call an external sub­

program. The programmer must reuse code from the entire pro~am and

cannot selectively choose the parts needed or modify the reusable code

for only the new program. In OOP, the programmer can pick and

choose which data and methods to reuse from existing classes. 'This

ability makes OOP a better language style for writing reusable code.

In OOP, through the use of inheritence, making minor changes to

reusable code is quick and easy. Ibe programmer can create II new

class and define only the parts that make the new class different from the

existing class. The OOP programmer takes advantage of the code

. already written without duplicating the code. Code reuse is not possible

in POP without duplicating the code and making the change to the new

copy. POP, unlike OOP, does not inherently allow for code reuse .

My research into the features and techniques for both POP and OOP

supports the hypothesis that, OOP is better than POP at reducing the time

spent in program maintenance and leads to improvements in code

reusability.

3

PROGRAM MAINTENA..~CE AND CODE REUSE
Object Oriented Versus Procedure Oriented Programming

Ilciramali Moradi,
H.S. Computer Science

A Culminating Project Presented to the Faculty of the Graduate School
of Lindenwood College in Partial Fulfillment of the

Requirements for the Degree of
Master of Science

Management Information Systems

1992

COMMUJJ;E IN CHARGE OF CAi\/DIDACY:

Associate Professor Mira Ezvan.
Chairperson and Advisor

Associate Professor Jim Factor,
* Actmg Chairperson and Advisor

Adjunct Professor Bob Chant,
Reviewer

Associate Professor Oliver L. Hagan,
Dean of Management Division

* Dr. Jim Factor was the acting Chairperson and Advisor during
Dr. Mira Ezvan·s absence in the Fall quarter 1991.

I

ACKi\iOWLEDC.d'vlE:si lS

Dr. Jim Factor's detailed and thoughtful reviews
of the many drafts of my thesis are much appreciated.

l would also like to thank Dr. ;v1ira Levan and llob Chant
for their suggestions and review of my thesis.

11

L

TABLE OF CONTENTS

Chapter Page

1 Introduction . 1
Statement of the problem . l
Significance of the problem 1
History of Object Oriented Programming 2
Research questions . 4
Object Oriented Data Base Management Systems. 7

2 nrh • Ob'· · 0 • d n • 'I 10 vv al 1s J..:d , ncntc "rogrammmg
Abstract data type 11
Fundamental data type 11
Class .. 11
Method .. 13
Constructor 13
Private . 15
Protected . 15
Public ... 15
Object .. 18
Message 18
Inheritance . 20
Derived class . 20
Programming by difference 23
Information hiding . 24
Encapsulation 24
Polymorphism 25
Function Overloading . 27
Templates . 27
Summary 29

3 Maintenance Programming Overview 30
Common reasons for program maintenance 30
Programming tools 32
Techniques and features 34
Choosing a different language . 35
Summary 36

Ill

4 Maintenance Programming Csing POP 37
Sample problem in Cobol 39
Fewer function names to remember and coordinate 42
Accidental modifications . 46
Error detection . 47
Change control . 48
Summary 51

5 Maintenance Programming Using OOP 52
Sample problem in C++ 53
Fewer function names to remember and coordinate 58
Accidental modifications . 58
Error detection . 60
Change control . 61
Summary 64

b Reusable Code Overview 65
Methods of code reuse 65
Reasons for the moderate success of code reuse 66
Reasons why code reuse reduces maintenance costs 66
Programming tools 67
Techniques and features 68
Choose a different Jangugage 69
Summary 70

7 Reusable Code Using POP 71
Writing reusable code 71
Copy command 73
Call command 78
Comparing copy and call commands 82
Making minor changes to reusable code 83
Modify the ex.ising code 84
Copy existing code to create a new program 86
Summary 87

8 Reusable Code Using OOP 89
Writing reusable code 89
Inheritance . 90
Templates 92
Making minor changes to reusable code 94
Summary 96

IV

9 Conclusions and Recommendations 98
Comparisons of POP and OOP 98
Conclusion . 101
Recommendation . 101

llibliograph y

Vita Auctoris

V

102

105

L

CHAPIERl

INTRODUCT1ON

Because of my experience as a maintenance programmer using

procedure oriented programming (POP) and because of my interest in

object oriented programming (OOP), I have chosen a comparison of

these two styles of programming. In particular, I am comparing how

their programming techniques and language features help in program

maintenance and code reuse. Today's programmers are spending over

half their time on maintenance problems. This adds up to a significant

cost for all programming shops. Therefore, the hypothesis for this thesis

is that OOP is more successful at reducing maintenance costs and

improving code reuse than POP. My research will include books and

1
trade magazines where maintenance and code reuse are discussed. I will

be gathering current information from several companies! to find out

about their experiences. My real world experience and academic

training will help in this research. To explain some of the points made in

this thesis, I will be using COBOL and C++ examples. COBOL will help

explain POP techniques and features and C++ will help explain OOP

techniques and features.

OOP is considered to be a superior language style to POP in many

ways. OOPs breakthrough is that its technology allows the programmer

l'Inese companies will include McDonnell Douglas, AT&T. Tripos
Assoc., Computer Artisans, Home Savings of America, JWP Controls.

L

to build large programs from several smaller prefabricated programs.2

This code reuse requires less programming time as compared to

developing similar large programs using POP. Reusing code is rare in

POP since the language does not inherently allow it. In OOP, by using

smaller simpler programming components, the entire application is

usually easier to maintain. Since the code from existing applications can

be easily reused, the programs will contain fewer bugs.3 These ideas

represent an introductory comparison of the two language styles. Futher

comparions can be found throughout this paper.

POP dates back. to the 1960's with the development of FORTRAN,

followed by COBOL and ALGOL-60. FORTRAN and ALGOL-60 were

used for scientific programming applications. COBOL was used for

business programming applications. Many major programming

languages were developed from these three early procedural languages.

OOP was first introduced during the late 1960" s with the

development of the programming language SIMULA-67. SIMULA-67

evolved from the procedural programming language of ALGOL-60 and

contained the new concept of classes and data abstraction. Classes and

data abstraction will be explained in chapter 2.

2James Martin, "OOP Holds Promise of Simplifying Computer
Programming", PC Week. 4 September 1989, page 62.
3John W. Verity and Evan I. Schwartz, "Software Made Simple",
Business Week. 30 September 1991, page 94.

2

FIGURE 1.0 - Lineage of Major Programming Languages4

LISP

Snobol PIJI

~llllllltalk-, Pascitl)

0-0 Lisps

~ (-Ad~ .. ~) ,---"----'c,___

C++

Legend

Nearly all programmers are familiar with POP since it is the

traditional style of programming. This style of programming is normally

a requirement when earning a computer related degree in college and is

more widely used in industry. OOP is normally only an elective class if

it is taught at all and is only beginning to be used in industry. For these

4Keith E. Gorlen, Sanford Orlow and Perry Plexico. Data Abstraction
and Object-Oriented Programming in C++, John Wiley & Sons, 1990,
page 4.

3

reasons I will begin my thesis by explaining the key terms used in 001'.

For programmers working with procedure oriented languages, there is

more than just syntax to learn.5 '!here are many new features to

understand and it is these features that make Object Oriented languages

stand out from other languages. Some of the features are as follows:

(1) abstract data types
(2) fundamental data types
(3) classes
(4) methods
(5) constructor
(6) objects
(7) messages
(8) inheritance
(9) derived class or sub-class
(10) programming by difference
(11) information hiding
(12) encapsulation
(13) polymorphism
(14) function overloading
(15) templates

I will review in chapter 2, these features and provide an explanation of

them and why they are useful. 6 I will also explain the major differences

between OOP and POP.

In chapter 3, I will cover an overview of maintenance

programming. Maintenance programming includes any type of work

5Jerry D. Smith, Reusabiiity & Software Construction: C and C++, John
Wiley & Sons, Inc., 1990, page xiv.
6Toese features are explained based on many of the definitions and
examples provided in the book written by Bjarne Stroustrup, The C++
Programming Language. Addison-Wesley Publishing Company, 1991.

4

done on a program after it is used in a production mode rather than in test

mode. This could mean correcting a programming error, enhancing the

code to agree with the users' latest requirements or improving the logic to

speed up !he run time. Maintenance programming issues discussed will

include the following : What are the common reasons for changing

production code'! Who is making changes to the production code'! Why

is it considered boring work? What programming tools can help? Whal

techniques and features can help?

Procedural language maintenance programming issues will be

discussed in chapter 4. Some of the most common programming

languages used today are procedural languages such as COBOL, Pascal,

FORlRAN and C. How can POP reduce the number of unique function

• names? Is there a way to help prevent accidental modifications? If a

modification resulted in an error, does POP allow the programmer to

easily detect the error? If a data structure changes, how can it impact all

the programs that use the structure?

Chapter 5 will discuss the maintenance programming issues

related to object oriented languages and such topics as : How does

polymorphism help in reducing the number of functions to remember and

coordinate? How does encapsulation help in preventing accidental

modifications, error detection and change control?

One way of improving maintenance time is to reuse code. In

Chapter 6, I will present an overview of code reuse. Reusable code

5

includes everything from storing program logic for modification and

reuse to calling compiled subroutines. Why hasn't code reuse been very

successful? How will code reuse help reduce development time and

maintenance costs'? What options are available to help promote code

reuse? What programming tools are available to help in code reuse?

What techniques and language features can help with code reuse'!

Chapter 7 explains the issues related directly to code reuse with

procedural languages and how to address (1) writing reusable code and

(2) making minor changes to reusable code. What techniques are

available in POP that direct! y helps in writing reusable code? If a change

must be made to reusable code what techniques can be used to make the

task easier?

Chapter 8 explains the features of code reuse in OOP for the

following areas: (1) writing reusable code and (2) making minor

changes to reusable code. Unlike POP languages, OOP languages have

many language specific features to help in code reuse. Some of these

features include inheritance and templates. What are the benefits of these

features?

Chapter 9 will discuss POP and OOP and how they compare. Is

POP or OOP better in reducing the number of function names to

remember and coordinate? Is POP or OOP better at preventing errors

and detecting errors? ls POP or OOP better at controlling the impact of

change to a data structure? Chapter 9 will also summarize and compare

6

OOP and POP to help us determine if OOP makes code reuse easier than

POP. If a programmer has to modify reusable code which style makes

the job easier? Finally there will be a recommendation for those

programming shops using POP and experiencing high maintenance and

development costs.

In support of OOP languages, object oriented database management

systems (OODHMS) were developed. Although OOP languages can use

traditional DBMS based on the relational, hierarchical or network data

models, the traditional DBMSs do not support the following7:

(1) Supporting complex operations on complex objects
(2) Supporting persistent sharable objects.

Many of the same features that are used in OOP languages have

been applied to OODBMS. These features include:

(1) Classes
(2) Objects
(3) Inheritance
(4) Encapsulation

A class can be stored in an OODBMS along with the objects

associated with each class.8 OODBMS objects can be either persistent or

transient. In persistent objects, complex data structures can be saved to

disk and can be shared from program to program without the

programmer having to code the task of translating the information in the

7 Keith Marrs, "Object-Oriented Database Management Systems: The
State of the Art", McDonnell Douglas Corporation Report B1659, 1989.
8 Elisa Bertino and Lorenzo Martino, "Object-Oriented Database
Management Systems: Concepts and Issues", Computer. April 1991,
page 33.

7

object between the data base and the program. Each of the classes are

encapsulated and the data and methods that are inherited between each of

the classes is stored in the OODBMS.

OODBMS directly support OOP Lo help with program

development, maintenance and code reuse. It is estimated that OODBMS

usage can save 20% to 30% of development costs above those saved by

using an OOP Ianguage.9 Experts in the industry predict that costs

associated with the developement and maintenance of a large OOP

application using an OODBMS will cost 1/5 to 1/10 of the costs

associated with a similar application using traditional methodologies. IO

Unfortunately very few programmers are actually using OODBMS.11

A quote from an article printed in the magazine Release 1.0,

supports the opinion that OODBMS improves code reuse.12

Object-oriented databases represent the ultimate in
reuse and sharing of code. The complex
interrelationships and interactions of objects and
methods need to be represented only once ... and are
then maintained for all users and applications.
Application programmers avoid redundant effort.

9 & 10 Thomas Atwood, "Applying the Object Paradigm to Databases",
Computer T,anguage. September 1990, P. 36 and 41.
11 Three of the programmers that I spoke to have used an OODBMS.
These programmers were from McDonnell Douglas, AT&T and
Computer Artisians. A second object oriented programmer from
McDonnell Douglas, uses relational databases rather than OODBMS.
12 "Objects at Large", Release 1.0. September 19, 1990, P. 4.

8

This thesis will not address any further the subject of 00 DBMS.

However, I did want to introduce the idea and mention that 00DRMS

do support improvements in program maintenance and code reuse.

9

CIW'TER2

WHAr IS OBJECT ORIENTED PROGRAMMING'!

Today the most commonly used style of programming is procedure

oriented programming (POP) where languages such as COBOL, Pascal,

FORlRAN and Care widely used. Most programmers are expeneoced

with POP, some are faouuarwith the concepts of object oriented

programming (OOP) and even fewer have any expeneoce with OOP.13

Going from a POP background into the world of OOP can be very

confusing. Most procedure oriented progrnmmers have difficulty in

changing their mindset to program in an object oriented language.

OOP is a programming style that is very different from POP. OOP

was designed with the idea that problem solving should relate directly to

the problem itself. Each object included in the program should be able to

relate to an item in the problem domain. The communication between

these items in the problem domain should relate to the messages that can

be sent to each object in the program. For a programming language to be

considered object oriented it must allow for classes, objects and

inheritance. The most important features of OOP will be explained

below.

13 Every programmer I spoke to knew a POP language, but it was
difficult to find programmers that knew OOP. There are usually one or
two departments in very large companies or a specialized small company
that use OOP. Of the companies that I spoke to AT&T, McDonnell
Douglas and Computer Artisians use OOP.

10

'!be centerpiece of OOP is the abstract data type.14 Data types are

either fundamental data types or abstract data types. Fundamrntal data

type.s include integer, real, character, and floating decimal. IS The

language decides what data values are valid for each of the fundamental

data types and decides what operations can be perlonned on them.

Abstract data types are just like fundamental data types except the

programmer rather than the language decides the data that will be valid

and what type of operations can be perl"ormed on that data. For example,

if a program needs to generate a report based on employee infonnation,

the employee could be defined as an abstract data type including such

operations as a request to determine if the employee is a member of a

union or to print the information related to an employee.

The way to define an abstract data type is by defining a clus..

FIGURE 2.0 shows the basic format in C++ for defining the class

Employee. The class definition for the abstract data type of Employee

should contain the data and operations relating directly to employee. The

data and operations are directly related and they cannot be separated.16

The operation Employee creates a new instance of the class Employee.

Tbe operation IsUmoo determines if an employee is a member of a

14 Richard S. Wiener and Lewis J. Pinson, An Introduction to Object­
Oriented Programming and C++, Addison-Wesley Publishing Company,
1988, page 1.
15 Terrence W. Pratt. PrCJiramroing Languages Design and
Implementation, Prentice Hall, Inc., 1984, page 44.
16 Jeffrey Duntemann, "OOP: A New Perspective on Code and Data",
PC Week. 14 November 1988, page 69.

11

union. The operation hint, prints information related to that employee.

The commands necessary to execute the operation arc found within the

symbols {} immediately following the operation name. In C++,

comments that are on a line by thcmself are found between the symbols

I* and *I. Comments can also be written on the same line as code as long

as the comment is preceeded by the symbols II. The Private and Public

sections of a class will be described later. The basic class Employee

formal is as follows:

FIGURE 2.0- Basic format for defining a class in C++

class Employee

private:
/* Lists data that can only be accessed by this class * I

public:
I* Lists operations that can be accessed by any class or program *I

Employee II operation 1 - creates a new employee
{ ... } II commands to perform Employee operation
.lsUoioo II operation 2 - determines if employee is in union
{ ... } II commands to perform .lsUoioo operation
hint II operation 3 - prints information for to employee
{ ... } II commands lo perform hint operation

A class is a way of describing similar "things". A class can be

defined by a programmer or taken from a library of classes. These

classes can later be referenced by other classes or directly by a program.

In the class definition, the programmer must define the type of data

and operations that are valid for the instances of that class. The data for

12

class Employee can be defined in the private section of the class

definition as follows:

long soc_sec_no; // Long int. number for social security number

wmg is a fundamental type of integer. Integers can either be defined as

long or short depending on how large the greatest possible value will be.

For social security number, the largest number will be 9 digits of all 9's.

For processing on a microcomputer, the number 999999999 exceeds the

largest possible value of 32,767 for short integers, so social security

number must be declared as a long integer.

Another word for an operation within a class is a method. In

:C++ the constructor method must have the same name as the class. The

constructor method creates a new instance of a class. The constructor

method Employee in FIGURE 2.1 requires 4 parameters be passed to

create a new employee. 'Ibe first parameter of new_ln will contain a

character string value like "Doe" that will be passed to LastName and

later set equal to last_name. The second parameter of new_fn will

contain a character string value like "Jane" that will be passed to

FirstName and later set equal to first_name. '!be third parameter of

new_jcd will contain a character string value like "52100" that will be

passed to JobCode and later set equal to job_code. The fourth parameter

of new _ssn will contain a long integer value like 111223333 that will be

passed to ssn and later set equal to soc_sec_no. The constructor method

13

definition from FIGURE 2.1 is defined as follows:

Employee (char LastNamef20l, char PirstName[15],
char J obCode[5 j, long ssn)

{ ... }

In PIGURE 2.1, both the method b-f/mon and the data variable

in_union are defined as boolean. A variable is a field assigned a name,

a set of attributes, a reference and a value.17 A boolean is an identifier

that contains either true or false. In the method Isf/mon, if the employee

is found to belong lo a union, the boolean variable in_union is set lo true.

To determine the value of in_union outside of the class Employee, the

methodisUmon must be used. The string function strncmp18 compares

the first n characters of two strings. Where n is an integer. The function

returns a value of :zero if the two strings are equal. The commands for a

method are between the symbols { and } and follow the method name.

17 Ellis Horowitz, Fundamentals of Programming Languages, Computer
Science Press, 1983, page 82.
18 Borland C++, Library Reference, Borland International, 1991, page
499.

14

The method fsllnioo from class Employee is defined as follows :

/* Returns true if the employee is union otherwise returns false •f
boolean IsUnion ()
{

if (strncmp (family, "100".3)) == 0)
in_union = true;

else
{
if (strncmp (family, "200",3)) == 0)

in_union = true;
else

in_union = false;
}:
return in_union;

In .FlGli RE 2. l, void is used with the method Print. Void is found

before a method's name when the method does not return a value to the

.: program. The t2U1 command and the insertion symbols << in the

method Print, causes the variables or literals following the command to

be printed as output.

/* Prints 3 strings and I long decimal • /
/* which are last name, first name and social security number*/
void Print()
{

}

cout << last_name <<" "<< first_name <<""
<< soc_sec_no << " " << job._code << " ";

Data and methods can be defined as private, protected or public. If

data and methods arc defined as private, they can be used only by the

defining class. If data and methods are defined as protected, they can be

used by the defining class and by any sub-class of the defining class. If

data and methods are defined as public, they can be used by the defining

15

class and any other class. flC.LRE 2.1 shows in detail three valid

methods in the public part of the class Employee. 1be first method,

called r.mp,loyee, tells what is necessary to build or construct an

instance of class Employee. Tbis constructor requires the last name, first

name, job code and social security number of the employee to be passed

as parameters. Rather than using the arrays that were passed as

parameters, C++ requires that a pointer lo the array be used. 'Jberefore

pointers were defined for last name, first name and job code. Ibe job

code field defines for the employee, the skill level and type of work. '!be

family field defines the employee's type of work. The second method,

named fsl.lm'oo was described above. The third method, called Priot,

will print a line of information related to the employee.

r7Gl/HE2.l- Class Employee in C++

#include <iostream.h>
#include <string.h>
;- Beginning of Class Employee definition * I
enum boolean {false, true}; /I false= O; true= I

class Employee {
private:
char *last_name;
char *first name· - '
char *job_code;
char grade[2];
char family[J];
long soc_sec_no;
boolean in_union;

II Class Employee definition
II Accessible only to this class
I I pointer to last name
I I p omter to fir st name
II pointer to job code
II 2 character string for the job grade
II 3 character string for job family
II Long int. value for social security number
II Boolean that tells if employee 1s in a union

16

fIGCRE 2.1 continued

public: II methods accessible by all classes
/" If 3 string and I numenc parameter 1s passed to the Employee *I
/* constructor, the private fields will be set equal to values passed *I
Employee (char LastNamef20], char FirstName[15],

char JobCode[S I, long ssn)
{
last_name = I ,astN ame; II Copies name to private data item
first_name = FirstN amc: ii Copies name parm to private item
job_code = JobCode; II Copies job code parm to private item
soc_sec_no = ssn: II Copies soc sec no parm to pnvate data item

/* Job grade is the same as the first 2 pos of job code *I
grade[0 J = job_code [OJ: II Position I of job code to pos 1 of grade
grade[1) = job_cocle f 1]: II Position 2 of]Ob code to pos 2 of grade

/* Job family is the same as the last 3 pos of job code *I
familyfO] = job_code[2): II Pos 3 of job code to pos 1 of family
family[l] = job_code[3): II Pos 4 of job code to pos 2 offdmily
family[2] = job_code[4]; II Pos 5 of job code to pos 3 offo.mily
}

/" Returns true if the employee is union otherwise returns false */
boolean ls Union ()
{
if (strncmp (family, "100",3)) == 0)

in_union = true;
else

{
if (strncmp (family, "200" .3)) == 0)

in....union = 1rue:
else

in_union = false;

eturn in....union;
};

}

/" Prints 3 strings and I long integer * I
/" which are last name, first name, job code and ssn *I
void Print ()
{

}
};

cout << last_name <<" "<< first_namc <<""
<< soc_sec_no <<"" << job_code <<" ":

II End of Class Employee Definition

17

Just like you can define a variable lo be one of the f undamcnlal data

types, you can also define a variable to be of an abstract data type.

When a variable is defined to be an abstract data type, the variable is

called an Q_~. An object is another word for an instance of a class. In

the example below from the main program in Figure 2.2, the object

NewEmp is assigned to the class Employee. The command below tells

the name for the constructor method Employee that must be executed to

create the new object NewEmp along with the data parameters.

Employee NewEmp(new_ln, new_fn, new_jcd, new_ssn):

.From FIGURE 2.2, the employee's information should only be

printed on the report if the employee is part of a union. Since the boolean

variable in_union is in the private area of the class Employee, the

program cannot directly access the variable in_union. The program must

use the method fsl/oion, to determine whether to print the employee's

information.

/* only print information on union employees * I
uniontest = NewEmp. fsl/nion ();
if (uniontest == true)

NewEmp. Print():

To cause a method to begin executing, a message must be sent to

the object that contains the method. This message must contain the name

of the method to be executed and any data that must be passed as

18

parameters to the object. There are three types of messages: i9

(1) Requests for data from within the object.
(2) Requests for the object to accept new data.
(3) Requests for object to perform special operations.

In the following example from the main program in FIGURE 2.2,

NewEmp is the object name for a definition of class Employee.

NcwEmp.Pdnt (J;

Print is the message name that relates directly to the method Itiol in the

class Employee. In the body of the program, the object name and the

message should be separated by a period. Nothing appears within the

parenthesis if no parameters are passed to the method. At execution time

the message Itiotis sent to the object NewEmp. This message causes

the method Print in the class Employee to bind the formal and actual

parameters from object NewEmp and print the information from the

object NewEmp.

A simple main program is shown below in FIGURE 2.2 that

references the class Employee in FIGURE 2.1 and generates a report of

only union employees.

19Mark Mullin. Object Oriented Program Design with Examples in C++,
Addison-Wesley, 1989, P. 59.

19

FIGURE 2.2 - Main Program

main() { II Start of main program logic in C++

char new_ln[20J, newJn[lSJ, new_jcd(SJ;
double new_sl, new_hr;
long new_ssn;
boolean uniontest;
do II start of loop through employee database
{
I* This is where the command to read the database should go. *I
I* The d a tab as e fields for last name is moved to new Jn. * I
I* The d a tab as e fields for fir st name is moved to new _fn. * I
I* The database fields for job code is moved to newjcd. *I
I* The database fields for social security numbers 1s moved to new_sm.*I

I* Construct a NewEmp object from the Employee class. *I
Emp/oyeeNewEmp(new_ln, new_fn, new_jcd, new_ssn);
I* only printinformation on union employees . * I
uniontcst = NewEmp. ls/Jnion O:
if (uniontest == true)

NewEmp. Print();
}
I* Stop looping when the database end of file is reached *I
while { ... code goes here to loop while employee recs remdin ... }

}

To define a new class that looks almost exactly like an existing

class, the programmer can reuse the code in the existing class and use any

of the data and methods available to the new class. '!he ability for a new

class to reference data and methods from an exisiting class is called

jnheritance. When one class inherits data and methods from an existing

class, the original class is called the root class. The new class is called the

derived class or sub--class. FIGURE 2.3 below shows that class

UnionEmp is derived from the root class Employee.

20

FIGURE 2.3 - Class UnionEmp inheritance from class Employee

UnionEmp

Union.£lJlj1

C1/cPi1y
Pr.mt

clan Unionl!ap inherits method,
E111ployee, ffU11ion 1n,t Print

from class Eaployee

Employee

£111ptoyee

l$0ninn

Prial

FIGURE 2.4 shows the class definition for the sub-class of UnionEmp

as derived from the root class Employee.

F7GlfRE 24 - Sub-class of UnionEmp

class UnionEmp : Employee { // Class UnionEmp definition
private: // Accessible only to this class
double salary; // holds salary for a union Employee
double hours; // holds hours worked for a union employee
double tot_hours; II holds total hours
double otpay; II holds the calculated overtime pay amount
double totpay; II holds the calculated total pay amount
double othours; II holds the calculated overtime hours
double otrate II constant overtime rate

21

FIG T.:RE 2.4 continued

public: II methods accessible by all classes
I* If 3 strmg and 3 numencparameter "passed to the UnionEmp *I
t• constructor, the private fields ·Rill be set equal to the values passed • /
llnionEmp(char l.astName[20], char FirstName[l S],

char jobcode[S], long ssn, double sal, double hrs):
Employee (LastName, FirstNamc, JobCode, ssn);

{ otrate = 1.5;
salary = sal;
hours= hrs;
tot hours = hours;

}
void CalcPay()

{
othours = hours - 40;
IF (othours < 0)

othours = 0;
else

hours= 40;
otpay = (othours * otrate * salary);
totpay = (hours * salary) + otpay;
}

void Print()
{

}

Employee :: Print();
cout << salary<<" " << lot_hours <<" " << totpay <<" "

<< otpay << "\n";
}

II End of class lJnionEmp definition

In general, the data and methods that a class inherits are all those

defined in the public and protected areas of the root class. In our

example there was no protected area, so the sub-class UnionEmp inherits

only the public methods .. Employee, /sl.fm'oo and .ITiot from class

Employee. The programmer must mention only the data and methods

that are needed in addition to those that arc inherited. Since the

programmer of the derived class only has to mention the data and

methods that are different from those available in the root class, this

22

feature is called programming by difference. Class UnionEmp must

have its own consu-uctor method CalcPa_y that can calculate the weeks

pay for a union employee and a method Priotto print the detail related

only lo union employees. '!be data fields in class UnionEmp are needed

only by the derived class and are kept in the private area of the class

definition. These data fields are used to calculate payroll dollars. A sub­

class was set up for union employees since it has characteristics that make

this type of employee different from other types of employees. One

characteristic is a unique formula to calculate payroll dollars. Chapter S

will build on this example and also shows a class for non-union

employees. FIGURE 2.5 illustrates that class UnionEmp and class

NonUnionEmp are derived from the root class Employee.

FIGURE 2.5 - Class UnionEmp and NonUnionEmp inheritance from
class Employee

UnionEmp

Onio11£11J1

C1h::P1y
Prim

clus Unionl!ap inherm 111Bthods
£-,,Joyee,. IsU11ioa mt/ Prml

froa class Eaployee

Employee
E•ployee
fsOnion

Priilt

HonUnionEap

KoaU11ionffl,p

CllcPI.J'
Prial

dus N onlJnionl!mp inherits aethods
FJIIPloyee, fsUnio11 Mui Prim

fro• dass l!aployee

23

As stated earlier, objects are of a certain type of class. Those

objects contain methods that manipulate the data. When a program

passes a message to cause an action, the program has no information of

how the action was completed. To the program, the object acts like a

"black box". All the program knows is that information is passed to the

object and a result happens. This process is called information hiding

since the information within the object is hidden from other objects.

'lbere are 2 main benefits to information hiding as noted below by

Stanley Lippman.20

(I) Change Control - If a data representation in a class changes,
only the members of the class would have to be modified.
User programs would not need to be modified.

(2) Error Detection - If an error occurs in the manipulation of a
class data member, only the class member functions need to be
evaluated to find the source of the problem.

This method of hiding information and only allowing certain types

of actions (i.e. methods) lo be pedormed against the data is called

encapsulation. Encapsulation acts like a filter that controls how an

object communicates with other objects and programs. From FIGURE

2.2, the command shown below constructs a new object NewEmp.

Employee NewEmp (new_ln, new_fn, new_jcd, new_ssn);

20stanley Lippman. C++ Primer. 2nd Edition, pg 51.

24

I

Object NewEmp is considered lo be an encapsulated object since

the data items in the private section of the object NewEmp can only be

accessed by the methods within object NewEmp. The methods in the

public areas of object NewEmp allow limited access by other classes

and programs. The type of access given to classes and programs outside

of object NewEmp is controlled by object NewEmp. For example, a

program can determine if the employee is a union member by sending the

message Islloioo to the object NewEmp. lbe programmer cannot

change the value of the boolean in_union, a variable in the private

section of class Employee, since it is accessible only to object NewEmp.

The value of boolean in_union is only accessible through the method

IsOoion. The value of the otrate (1.5) is not accessible at all by any

class or program outside of class UnionEmp. Otrate is not even

available through a method. Encapsulating specific data items helps to

prevent accidental modifications. If there should never be a reason for

this value to be modified directly outside the class definition then the data

should be made private and therefore encapsulated from misuse.

As mentioned earlier, both the class Employee and the class

UnionEmp will have a method Eno/. Tbe same name can be used to

execute both the method Print for the class Employee and the method

Enotfor class UnionEmp. The system takes care of deciding which

method to execute based on the type of object the message is sent to. The

system determines which method to execute at run time. 1be ability to

resolve which set of procedures to execute is called polymorphism.

25

What follows is a command found in FIGLRE 2.2 that issues the

message Print.

NewEmp. Print();

Since object NewEmp is derived from the class Employee, the system

knows to execute the method Print found in the class Employee rather

than the method Print found in the class UnionEmp. Similarly, for an

object NewUnionEmp, the system would use the method Inn/found in

the class UnionEmp in the following command.

NewUnionEmp. Print();

. With the system resolving which method to execute, less work is

required of the programmer. 'Ibis certainly reduces the number of

messages that a programmer must remember when using different classes

and decreases the chances of errors.

A capability exists that allows multiple functions to have the same

function name within one class. lbis capability is useful because there

will be fewer functions names to remember and coordinate. '!be

system takes care of executing the correct function based on the type or

number of data items being passed as parameters. '[be only requirement

of these same-name-functions is that there be a difference in either the

number of parameters in each function or that the parameters types be

26

different. Ibis ability of the system to have several functions with the

same name within one class is called functjon overloading.

Templates arc a new feature to some object oriented languages.

Templates can be used when multiple functions contain the same code

except they process different types of data and return different types of

data. If a programmer needed a function to return the minimum integer

value found in an array of integers, the function would be as found in

FIGURE 2.6 below.

FIGURE 2.6 - Function for finding minimum integer in array

mt min (m~ array, int size) {
int min_ val= array[O];
for (int ix = 1; ix < size; ++ix)

if (array[ix] < min_val) min_val = array[ix];
return min_ val;

}

Now lets assume that the same programmer also needed a function to

return the minimum real value found in an array of real numbers.

FIGURE 2.7 is an example of how that function may look.

FIGURE 2.7 -
Function for finding the minimum double precision number in an array

double min (double* array, int size) {
double min_val = array[O];

for (int ix= 1; ix< size; ++ix)
if (array[ix] < min_val) min_val = array[ix];

return min_ val;
}

27

Both functions perform the same task of searching through an array of

numbers to find the minimum number. The only difference is that in the

first function the array and returned number are of type integer and in the

second function the array and returned number arc of type real. Instead

of coding two separate functions, one function could be written as a

template function with the data type as a variable. Templates require that

a skeleton for the function be written with an argument passed to the

function telling what data type will be processed. FIGURE 2.8 shows a

function template where the argument defining the data type is JYP.l!.~

FIGURE 2.8 - Function for finding minimum unknown type in array

template <class TYPE >
lYPE min (fYPE * array, int size) {
IYP.l!.' min_ val = array[0 j;

for (int ix= 1; ix< siz.e; ++ix)
if (array[ixj < min_val) min_val = array[ix];

return min_ val;
}

To process this template against an array of integer numbers and return

an integer number, the command must be issued as follows where

int_array is an array filled with integer numbers :

int intJesult = min(int_array, size);

To process this template against an array of real numbers and return a

real number, the command must be issued as follows where

double __ array is an array filled with real numbers :

double doubJesult = min(double_array, size);

28

Templates help in program maintenance since there will be fewer

functions to maintain but templates can significantly improve code

reusability.

SUMMARY

'Ibe major differences between POP and OOP are the capabilities of

data abstraction, encapsulation, inheritance and polymorphism.21 POP

languages like COBOL for example, allow only the fundamental data

types of characters, integers, binary, and single-precision floating decimal

but do nol allow for abstract data types. POP languages also do not

allow encapsulation, inheritance and polymorphism. These features help

to make OOP a more 11exible language than POP. Chapters 3, 4, and 5,

will support the suggestion that object oriented programs are easier to

maintain than procedure oriented programs.

21Ray Duncan, "Power Programming, Redefining the Programming
Paradigm: The Move Toward OOPLs". PC Magazine. 13 November
1990, page 526.
Zack Urlocker, ''Teaching object-oriented programming", Journal of
Object-Oriented Pr~rarnrnjng. July-August 1989, page 45.

29

CHAPTER3

MAINJr:NANCE PROGRAMMING OVERVIEW

On average programmers today spend 60% of their time

maintaining programs and this is increasing al approximately 1 % each

year.22 It is also estimated that 70% of the investment on an application

over its entire life is spent on maintenance.23 Investigation has shown

that one of the major causes of new development projects not meeting

scheduled implementations is because of unplanned maintenance.24

Maintenance programming includes any change made to a program once

it is in a production mode no matter what the reason for the change.

Common reasons for change are :25

(1) Correct a "bug" in the program.
(2) Improve the system as requested by the user.
(3) Improve logic to speed up the application.

Even changes that seem to be minor, can take a long time to complete.

There are many reasons that cause program maintenance to be so time

consuming. The cause is usually that a program is confusing and the

person doing the job has trouble determining the best place to make the

22Martin Butler and Robin Bloor, "Object Orientation," DBMS. July
1991. page 17.
23Diane Drotos and Stella Skerlec, "Creating a Rewarding Maintenance
Environment." Computing Canada. 25 October 1990, page 42.
24Michiel Van Genuchten, "Why is software late'!," IEEE Transactions on
Software Engineering. July 1991, page 582.
25Lowell Jay Arthur, Software Evolution : The Software Maintenance
Challenge, Wiley-Interscience Publication, 1988, pages 5-6.

30

l

change. The programmer must make sure that the change being made to

the program docs not cause new problems.

'fbe person making the change is usually not the same person that

wrote the program in the first place. C sually maintenance programmers

arc the newest programmers in a department. The more experienced

programmers are usually working on the development of new

applications. Since changes arc being made by inexperienced

programmers, they often have trouble finding the best way to make a

change to a program. These changes often act like bandage fixes which

can turn an already difficult to maintain program into a nightmare.

Maintenance is demotivating work for most programmers and new

development is considered motivating.26 When designing and

programming an application from scratch, the programmer has a lot of

room for creative expression. When doing program maintenance, the

flow of the application is complete and the programmer must fit into the

structure already set up. Creatively this is not as challenging to most

programmers.

It is very frustrating and can be difficult to lry and determine how a

change to a program will affect the rest of the program. Programs are

often structured so that what could have been a simple change becomes a

major change. The ability to isolate changes to small sections of code can

help reduce maintenance time. In some languages this could mean using

31

a programming technique and in other languages this is done by built in

language features.

Because of the amount of time spent in program maintenance, you

can see why companies are trying to improve the process. There are

several options available. Some of the options to help reduce program

maintenance Lime are : 2 6

(1) lise prog1aOW1ing tools to improve testing and making the
changes.

(2) Make sure programmers use the language teclmiques and
features available for the chosen language.

(3) Choosing a dilk.reot language or slJ1l' of language to find one
better able to improve maintenance programming"

l:ach of these will be considered in the following 3 sections :

(1) Programming Tools
(2) Techniques and Features
(3) Choosing a Different Language

PROGRAMMING TOOLS

Programming tools are available that can help reduce the time spent

in program maintenance. For each maintenance task, a tool may be

26Girish Parikh. Tec;boiques of Program and System Maiotenaoce. QED
Information Sciences, Inc., page 278.

32

available that can help reduce the time spent doing that task. 'lbree of

those tools arc as follows :

(a) Debugging Tools
(b) Conversion Tools
(c) Cross Reference Listings

Locating a bug in a program takes a lot of time. Debugging tools27

are available for many languages to help find program bugs. 'These

debuggers let the programmer step through the program line-by-line to

see just how a program reacts to the data it processes. Variables can be

displayed to show when the value changes. Being able to see what

functions are executed and what the value of certain fields are, helps the

programmer identify problem areas quickly which reduces testing.

, Debuggers are available for both POP and OOP.

Trying to read unstructured procedural code can be very time

consuming. Conversion tools exist that allow code to be read into a

conversion program that changes it into structured code. Structured code

is an accepted style of programming that helps makes POP code easier to

understand and therefore easier to maintain.

Trying to find where variables and procedures are defined and used

in a program can be a difficult and time consuming task. Fortunately,

many POP compilers (e.g. COBOL, FORTRAN, Pascal, etc.) offer cross

27Programmers from every company I spoke with used a debugging tool
regardless of whether the programmer was using OOP or POP.

33

reference listings that shows where a variable or procedure is defined

and used in a program. These cross reference listings arc very helpful

when trying to understand the impact that changing a module will have

on the rest of the program. The cross reference listing can act as

documentation and serves as an important loo! in the maintenance

process.

TECHNIQUES AND FEA11JRES

Applying programming techniques to a language can improve the

maintenance process. For example one could make the program self

documenting by adding comments or using structured programming

lechniques.28 Unfortunately techniques must be implemented by the

programmer. Nothing forces the programmer to use a technique. Many

• terhniques are meant to help the maintenance programmer at a later date.

The development programmer is usually not concerned about the

maintenance programmer. Everything in the program makes perfectly

good sense to the development programmer so spending the time to

apply some of the techniques to help the maintenance programmer seems

like wasted time and often these techniques do not get applied.

Using language features are more successful at reducing

maintenance costs then using programming techniques. An example of a

28 A programmer from Tripos Associates presented documented
programming standards that stressed the use of internal source code
documentation.

34

language foature that helps reduce maintenance time is encapsulation in

OOP. Encapsulation reduces the time it takes to find errors and makes it

easy to determme the impact of a change to a class. Polymorphism is an

OOP language feature that reduces the numher of function names to

remember and coordinate. How Encapsulation and Polymorphism help

the maintenance task is explained in detail in chapter 5.

All languages have some basic programming techniques and

features that can be used to help reduce maintenance time. POP

languages have fewer such language features than OOP languages.

CHOOSING A DIFFERENT LANGUAGE

If the language chosen by a programming shop is not performing

well in the area of maintenance, a review must be done to determine if the

selected language is being used to its best or if another language should

be chosen. If the program maintenance does not improve by using the

tools, techniques and features for a chosen language, then the

programmer should consider choosing a different language. lbere may

be an improvement by going from one procedural language to another

but there may be an even greater improvement by going from a

procedural language to an object oriented language.

Using a language that has features to help a programmer code so

that program maintenance is naturally improved is better than using a

language where it is up to the programmer to remember to apply special

techniques to the code.

35

SUMMARY

Since POP and OOP have similar programming tools available,

these tools will not be discussed in the following chapters. What I will

concentrate on in chapters 4 and 5 are the language techniques and

features available to help reduce program maintenance time in four

specific problem areas found in FIGURE 3.0.

FIGURE 3.0

1. Fewer function names to remember and coordinate.
2. Accidental modil'icalions.
3. Error detection.
4. Change control.

36

CIIA1'I11R 4

MAINTENANCE PROGRAM:\1ING l;STNG POP

There are tools, techniques and language features that can be applied

to procedure oriented programming (PO I') languages to help improve

program maintenance. This chapter deals with POP, and how together

the language style and the programmer are able to address the four

program maintenance areas in FIGURE 3.0.

To address these areas, the following example will be referenced

throughout this chapter. Assume that a programmer was asked to write a

program to calculate the weekly pay for the employees of Company A.

Company A uses the POP language COBOL COBOL was chosen as the

language for the following example because the features and problems it

has in the area of maintenance arc characteristic of other POP languages

and COBOL is the most widely used POP language in business.

EXAMPLE

PROBLEM DISCUSSION

Company A has both union and non-union employees. A
program must be written that takes each employee's salary and
current week's hours to calculate the week's pay and print a
detailed report.

Union employee description:
o Paid by the hour and receive 1.5 times their hourly rate for

each hour of overtime.
o Salary is stored as an hourly amount.
o Report should contain the following information: (1) name

(2) SSN (3) job code (4) salary (5) hours worked (6) total pay
(7) overtime pay. Sample output follows :

37

NAME SSN JOBCODE SALARY HRS TOTPAY OTPAY
Smith Mary 222334444 52100 $10.00 44 $460 00 $60 00

Non-union employee description:
o Paid a weekly salary and arc paid the hourly equivalent

of their weekly salary for each hour of overtime.
o Salary is stored as a weekly amount.
o Report should contain the following information for non-union

employees (1) name (2) SSN (3) job code (4) salary (5) hours
worked (6) total pay. Sample output follows :

NAME SSN JOB CODE SALARY HRS TOTPAY
Doe John 111223333 58444 $450.00 40 $450.00

IMPLEMENTAllON

Positions 1-2 of the job code field indicate the skill level or grade
of the employee. Positions 3-5 of the job code indicate the family
of work the employee belongs lo. If the job family is equal to
union number 100 or union number 200, the employee is
considered a union employee.

FIGURE 4.0 shows pieces of the COBOL program that would

perform the necessary calculations and print the report. To reduce the

length of the program only the important lines of code will be included in

the program. An asterisk before a line of code means that line is a

comment.

38

1-li.JLRL 4.U - Lrnpluyc" Payroll Report in COBOL

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION

FD REPORT-FILE
DATA RECORD IS REPORT-RECORD

01 REPORT-RECORD PICX(133).
* 'l be data area is in the working-storage section.
WORKING-STORAGE SECTION.

01 100-EMPLOYEE-RECORD.
05 100-LAST-NAME
05 100-FIRST-NAME
05 100-DEPARTMENT
05 100-JOB-CODE.

PICX(20).
PICX(15).
PICX(04).

10 100-GRADE PICX(02).
10 JOO-FAMILY PIC X(03).

88 100-88-UNION-EMPLOYEE

05 100-SSN PIC 9(09).
05 JOO-SALARY PIC 9(6)V99.
05 100-HOURS PIC 9(3)V99.

01 200-HOLD-AREAS.
05 200-UNION-OTRATE PIC 9(3)V99
05 200-HOLD-HOURS PIC 9(3)V99
05 200-OTHOURS PIC 9(3)V99
05 200-OTPAY PIC 9(6)V99
05 200-TOTPAY PIC 9(6)V99
05 200-HRLY-RATE PIC 9(3)V99
05 200-END-OF-FILE PICX(03)

01 300-CONSTANT-AREA
05 300-FULL TIME-HOURS PIC 9(03)

VALUE "100",
"200".

VALUE LS.
VALUE 0.
VALUED
VALUE 0.
VALUE0
VALUE0
VALUE"NO"

VALUE 40.

39

FIGl'RE 4.0 continued

01 400-PRINT-DETAJL-LINE.
05 FILLER
05 400-LAST-NAME
05 FILLER
OS 400-F!RST-NAME
OS FILLER
05 400-SSN
05 FILLER
05 400-JOB-CODE
05 FILLER
05 400-SALARY
05 FILLER
05 400-HOURS
05 FILLER
05 400-TOTPAY
05 FILLER
05 400-OTPAY
05 FILLER

PICX(03).
PICX(20).
PICX(03).
PICX(!S).
PICX(03).
PIC 9(9)
PICX(02).
PICX(05).
PICX(02).
PIC $ZZZ,ZZ9.99.
PICX(03).
PICZZ9.99.
PICX(03).
PIC $ZZZ,ZZ9.99.
PICX(03).
PIC $ZZZ,7ZZZZ.
PICX(03).

• The main program and paragraphs are found in the procedure division.
PROCEDURE DIVISION.
0000-MAINLINE.

PERFORM 1000-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS

UNTIL 200-END-OF-FILE = "YES".
PERFORM 3000-TERMINATION.

1000-INITIALIZATION.
• OPEN FILES, DO INITIAL READ

2000-PROCESS-EMPLOYEE-RECS.
PERFORM 2100-CALCPAY
PERFORM 2200-PRINT-REPORT
PERFORM 8000-READ-EMPLOYEE-REC

2100-CALCPAY
IF 100-88-UNION-EMPLOYEE

PERFORM 2110-CALCPAY-UNION
ELSE

PERFORM 2120-CALCPAY-NONUNION.

40

FIGURE 4.0 continued

2110-CALCPAY-UN!ON.
MOVE 100-HOURS TO 200-HOL{)-HOURS
COMPUTE 200-OTHOURS =

200-HOLD-HOURS - 300-FULLTIME-HOURS
IF 200-OTHOURS < 0

MOVE ZERO TO 200-OTHOURS
ELSE

MOVE 300-FULL TIME-HOURS TO 200-HOLD-HOURS
COMPUTE 200-OTPAY =

(200-OTHOURS * 200-UNION-OTRATE * 100-SALARY).
COMPUTE 200-TOTPAY =

(200-HOLD-HOURS * JOO-SAi.ARY) • 200-OTPAY

2120-CALCPAY-NONUNION.
MOVE 100-HOURS TO 200-HOLD-HOURS.
COMPUTE 200-OTHOURS =

200-HOLD-HOURS - 300-FULLTIME-HOURS.
COMPUTE 200-HRLY-RATE =

100-SALARY / 300-FULLTIME-HOURS.
IF 200-OTHOURS < 0

MOVE ZERO TO 200-OTHOURS
ELSE

MOVE 300-FULL TIME-HOURS TO 200-HOLD-HOURS.
COMPUTE 200-TOTPAY=

(100-SALARY) +

(200-OTHOURS * 200-HRLY-RATE).

2200-PRINT-REPORT
IF 100-88-UNION-EMPLOYEE

PERFORM 2210-PRINT-UNION
ELSE I

PERFORM 2220-PRINT-NONUNION

2210-PRINT-UNION.
MOVE 100-LAST-NAME TO 400-LAST-NAME.
MOVE 100-FIRST-NAME TO 400-FIRST-NAME.
MOVE 100-SSN TO 400-SSN
MOVE 100-JOB-CODE TO 400-JOB-CODE.
MOVE 100-SALARY TO 400-SALARY
MOVE 200-HOLD-HOURS TO 400-HOURS.
MOVE 200-TOTPAY TO 400-TOTPAY
MOVE 200-OTPAY TO 400-OTPAY
WRITE REPORT-RECORD FROM 400-PRINT-DETAIL-LINE

AITER ADVANCING 2 LINES.

41

FIGCRE 4.0 continued

222G-PRINT-NONUNION.
MOVE 100-LAST-NAME TO 400-LAST-NAME.
MOVE 100-FIRST-NAME TO 400-FIRST-NAME.
MOVE 100-SSN TO 400-SSN
MOVE 100-JOB-CODE TO 400-JOB-CODE.
MOVE 100-SALARY TO 400-SALARY
MOVE 200-HOLD-HOURS TO 400-HOURS.
MOVE 200-TOTPAY TO 400-TOTPAY
MOVE ZEROES TO 400-OTPAY
WRITE REPORT-RECORD FROM 400-PRINT-DETAIL-LINE

AITERADVANCING 2 LINES.

3000-TERMINATION
• CLOSE FILES AND STOP RUN

8000-READ-EMPLOYEE-REC
• READ RECORD FROM FILE
• AT THE END OF THE FILE SET 200-END-OF-FILE TO "YES"

FEWER FUNCTION NAMES TO REMEMBER AND COORDINATE

Nearly all programming shops have several different types of

functions. Most of these functions are very different from one another.

But in many other cases, the functions arc very similar with only slight

variations of the data types or operations. There are also occasions

where a function will act almost like another function but coded with a

different programming style. Sometimes these functions will be in their

own separate library file and other times the functions will be within the

source code for the entire program. lbe result of too many functions is

an overcrowded and difficult to maintain library. It is also difficult for a

programmer to take advantage of using any of the common functions

because of a large number to choose from and because the names may

not always clearly relate to what the function is actually doing.

42

When designing the structure of the COBOL program most of

today's prugrarnmers would apply a structured programming technique

called cohesion. Cohesion means that all paragraphs or sub-programs

should perlorm only one task. With cohesion, the paragraph or sub­

program will be less complicated and easier to follow since the

programmer must concentrate on only one task. This can help during the

maintenance process. Naming these paragraphs or sub-programs is also

very important so that the maintenance programmer can easily identify

what is being done. Since there are two types of employees in our

example, there are two separate ways to calculate their weekly pay

amount and two separate print lines. We would want to code each of

. these similar tasks as separate paragraphs. Since these paragraphs will

pcrlorm very similar functions except that one is done for union and one

is done for non-union, their paragraph names were made very similar.

Each of the paragraphs in FIGURE 4.0 performs only one task.

Even though the calculation of a week's pay seems to be one task, the

task is done differently depending on whether the employee is union or

non-union. In this particular example there arc only two print paragraphs

and two calculate pay paragraphs so this is not really too confusing.

Imagine if there were 10 different types of employees with separate

calculations and print detail formats. 'Ibis would eventually leave the

programmer with too many similar paragraphs to keep track of and

maintain. Other programs that may need to perlorm payroll calculations

would also have to repeat the same paragraphs.

43

If a function such as calculate payroll will be used by many different

programs, the paragraphs may be removed from the code and treated as

callable sub-programs. Even if the functions were treated as sub­

programs, there would probably still be a separate sub-program for each

type of employee. In our example below, 100-SALARY and

100-HOURS pass the required information into the sub-program and the

results arc passed in the parameters 200-OTPA Y and 200-TOTPA Y. The

parameters to pass information into and out of the sub-program follow

the USING statement. COBOL will only allow 8 position unique names

for the sub-programs. so to calculate pay for union employees the name

CALCUNON was chosen. To calculate pay for non-union employees

the name CALCNONU was chosen. The calculate pay paragraph that

follows would replace the same paragraph name in FIGURE 4.0.

Paragraphs 2110 would be moved to the sub-program CALCUNON and

the paragraph 2120 would be moved to the sub-program CALCNONU.

2100-CALCPAY
IF 100-88-UNION-EMPLOYEE

CALL "CALCUNON" USING

ELSE
CALL "CALCNONU" USING

100-SALARY
100-HOURS
200-OTPAY
200-TOTPAY

100-SALARY
100-HOURS
200-0TPAY
200-TOTPAY

By looking at the names of the sub-programs, ii is not obvious what will

happen. The name CALCUNON and CALCNONU will not mean much

44

to a maintenance programmer. The development programmer must

remember to put good paragraph names or add good comments lo

explain just what is going on in the sub-programs. Like the problem with

paragraphs, when there arc 10 different types of employees there will

need to be 10 different sub-programs. This can be too much for the

maintenance programmer to try to keep straight.

Another technique exists to use a sub-program but code ii as one

large sub-program called CALCPA Y. An additional parameter would

have to be passed to the program identifying what type of employee is

being processed. Paragraph 2100 as it appears in FIGURE 4.0 would be

replaced with the following paragraph.

2100-CALCPAY
CALL "CALCPAY" USING JOO-SALARY

JOO-HOURS
JOO-FAMILY
200-UNION-OTRATE
200-OTPAY
200-TOTPAY.

Paragraph 2100, 2110 and 2120 as they appear in FIGURE 4.0 would

move to the sub-program CALCPA Y. Ily using one single sub-program,

the main program is a little less confusing since it does not have a

separate paragraph for each type of calculation. Only one function name

must be remembered to calculate the pay. The only drawback is that now

the sub-program of CALCPA Y will contain several paragraphs that

perform similar calcuations but have slightly different names.

45

The use of paragraphs or callable sub-programs are language

features. but using them cohesively is a programming technique. '!be

programmer must remember lo have only one task for each paragraph,

choose a meaningful name and add sufficient comments so the

maintenance programmers job is made easier. With POP you have a lot

of function names to remember and coordinate.

ACCIDENTAL MODIFICATIONS

A programmer must be very careful when making modifications to a

program. In POP it is very easy to accidentally modify data variables

that should not have been modified.

In COBOL, every field in working storage is accessible to every

line in the program. '!his would mean that a programmer may move data

to the wrong field and no warning would be given at compile time.

These errors are usually found during testing or once the program is

running in production.

Lets assume the following move statement was accidentally put in

paragraph 2120 of FIGURE 4.0.

MOVE 200-OTPA Y TO 200-UNION-fffRATE

The program would compile with no errors since both fields 200-

O1PA Y and 200-UNION-OTRA'f1\ exist in working storage. The

46

problem is that 200-UNION-OTRATE should nol be changed. In

COBOL there is no way to prevent a number from being moved lo 200-

UNION-OTRATE.

Some POP languages like COBOL have no language features or

techniques that can be used to prevent accidental modifications.

ERROR DETECTION

If a program is not working properly, the program is said lo have a

"bug". It is then the job of the maintenance programmer to correct the

bug. This task can sometimes be very difficult especially when many

different functions have access to the same variable data fields. In our

COBOL example or FIGURE 4.0, lets assume lhal a maintenance

programmer was told, the union employees overtime pay is not being

calculated correctly. '!be input file containing the employee's hours,

salary and job code was found to be accurate so the problem must exist

in the program. 'Ibe programmer would probably first look at paragraph

2110 and see if the formula is correct. When the formula is reviewed, it

is found lo contain several working storage fields. Each of these fields

would have to be evaluated to determine if they were being improperly

set. Since every field in working storage is accessible lo every line in the

program, there may be a lot of work ahead of the programmer to

determine what might have gone wrong with the fields that make up the

formula. Tf for example, the program in FIGURE 4.0 was accidently

47

modified so that the following move statement was put in paragraph

2120, it might take a while to find this bug.

MOVE 200-OTPAY TO 200-lJNlON-OTRATE.

The working storage field for 200 lJNION-OTRATE is supposed to be a

constant value of 1.5 which is correct. But the error of adding this move

causes the constant 200-UNION-OTRATE to change every time

paragraph 2120 is executed. Since the union employees pay is incorrect,

the maintenance programmer would probably not even look at the non­

union paragraph for quite a while.

Most POP languages such as COBOL rely on tools such as

debuggers t.o detect this type of problem. In programming shops where

debuggers do not exist, the programmer must step through the code line

by line to look for logic flaws. Stepping through a program line by line

can be very time consuming and therefore costly during the maintenance

process.

CHANGE CONTROL

When a maintenance programmer is making a change to part of a

program, it can be difficult to determine what impact that change will

have on the entire program. As identified early in this chapter, the

program in FIGURE 4.0 was developed using the structured

programming technique of cohesion. The example bug found in the

48

Error Detection section above can be corrected fairly easily once it is

found. Since this bug is in a cohesively designed program. we can safely

say that setting the union overtime rate field in the non-union calculate

pay paragraph does not make sense. In fact having this bug in the

program actually made paragraph 2120 be non-cohesive since the

paragraph did more than just calculate non-union employee's weekly

pay. By removing the statement in error, paragraph 2120 returns to a

cohesive state and in this case, nothing else would be impacted by the

change. When a program was written using cohesion, and the

programmer must later make a change, then it is fairly easy to determine

where the change should be made.

Some changes that are requested can have a major impact regardless

of whether programs were developed with cohesive techniques. The

President of CASE Associates Incorporated presented a paper at

Showcase VI stating that one of the disadvantages of Structured Methods

is that even small programming changes can lead to high maintenance

costs.29 Assume that management plans to restructure the employee's job

code. It will no longer be possible lo look at positions 3 through 5 of the

job code to determine if the employee is a union employee. Management

has proposed that the positions 1 through 2 of job code still show the

employee· s grade level but now positions 3 through 4 will be used to tell

29Wiiliam David Sharon, President of CASE Associates, Inc.,
"Comparing Object-Oriented and Structured Methods·•, Showcase VI,
September 25, 1991, St. Louis, MO.

in which field the employee is working and position 5 will be used to

match against a table lo determine the employee family. For example a

person with a new job code of '"521'(.j 1 •• would be identified as follows :

positions 1-2: value of 52: means grade level of 52
positions 3-4 : value of PG : means programming field
position 5 : value of 1 is matched to a !able lo find that the

employee is in union 100

'!be impact of this change on the program in FIGURE 4.0 ts

moderate. Logic must be: added to use position 5 of the job code and

read a table to find out if the employee is union.

JOH CODE FIELD
05 100-JOB-CODE.

10 !00-Cl(,\DE
10 1001-lEJ .D
10 100 FAMILY

!'IC X(02).
PIC X(02).
PIC X(0l).

FAMILY TABLE
01 FAMILY-TABLE.

10 FAMILY KEY PIC X(!).
IO FAMILY-CODE PIC X(J).

The IF statements in paragraphs 2100 and 2200 will have to be modified

to test the result of the table search.

2100-CALCPAY
SEARCH FAMILY-TABLE

WHEN FAMILY-KEY= 100-FAMILY
THEN MOVE FAMILY-CODE TO 200-HOLD-FAMILY

IF 200-HOLD-FAMILY = "100" OR 200-HOLD-FAMILY = "200"
PERFORM 2110-CALCPAY-UNION

ELSE
PERFORM 2120-CALCPAY-NONUNION.

But even more significant is that all the programs in the company that use

the family identifier within the jobcode will have to be modified with the

same changes that applied to the sample program in FIGURE 4.0. This

could take a significant amount of time. POP languages such as COBOL

50

do not have programming language features or techniques Lhal eliminate

this type of maintenance problem.

SUMMARY

In summary the procedure oriented languages do not have inherent

abilities to (1) reduce confusion of having many similar functions, (2)

prevent accidental modifications, (3) help detect errors quickly or (4)

limit the impact of changes to a system. There is no way to prevent the

accidental modification of data in POP languages such as COBOL. If the

development programmer used a structured programming technique of

cohesion, error detection and code changes will be a little easier for the

maintenance programmer. 'lbe only way to reduce the confusion of

having many similar functions is to have good documentation to easily

find and understand the purpose of each function. Relying on the

programmer to understand and remember lo apply these techniques is not

a perfect solution to the problem but techniques do help in program

maintenance if consistently applied. But the reality is that programmers

arc often under a lot of time pressure and often leave out the

documentation or document poorly30 and don't always follow the rules

of cohesion and good programming techniques.

30Programmers from McDonnell Douglas, AT&T, and Ilome Savings of
America said that they felt pressured to meet programming deadlines and
often neglected to update or write good documentation.

51

CHAPTERS

MAINTENANCE PROGRAMMING USING OOP

One of the reasons for the development of object oriented languages

was to improve program mainteuance.31 The result was a language style

with features specifically designed to help the four program maintenance

areas listed in FIGURE 3.0.

In chapter 4, Company A requested that a program be written to

calculate the weeks pay and print a formatted report of the pay detail

information. Chapter 4 showed that program in the POP language of

COHOL. '!bat same program will now be shown using the OOP

language of C++. To reduce the length of the program, only the

important lines of code will be included. Comments can be found

between the symbols/* and * / or following the symbol ff when the

comment is on the same line as source code.

311)icl:. Pountain, "Object-Oriented Programming", BYTE, February
1990, page 257.

52

rlGl/HE5.0 - Employee J'ayrull Report m C++

#include <iostream.h>
#include <string.h>
/* Beginning of Class Employee definition * /
enum boolean {false, true}; II false = D; true = 1

class Employee { II Class Employee definition
private: II Accessible only to this class
char *last_namc; II pointer to last name
char *firsl_name; II pointer to first name
char *job_code; II pomter to job code
char grade[21; II 2 character string for the job grade
char family[3]: II 3 character string for job family
long soc_sec_no: II Long int. value for social security number
boolean in_union;II Boolean that tells if employee is in a union

public: II methods accessible by all classes
/* If 3 string and 1 numeric parameter is passed to the Employee *I
/* constructor, the private fields wtll be set equal to values passed */

Employee (char LastName[20], char FirslName[15],
char J obCode[5 J, long ssn)

{

}

last_name = LastN ame: II Copies name parm to private data item
first_name = FirstN ame: II Copies name parm to private item
job_codc = JobCode; II Copies job code parm to private item
soc_scc_no = ssn; II Copies soc sec no parm to private data item
/* Job grade is the same as the fast 2 pos of job code *I
grade[O] = job_code [OJ: II Position 1 of job code to pos 1 of grade
grade[1] = job_code [1]: II Position 2 of job code to pos 2 of grade
t• Job family is the same as the last 3 pos of job code • t
family[O] = job_code[2]; II Pos 3 of job code to pos 1 of family
family[!]= job_code[3]; II Pos 4 of job codetopos 2 of family
family[2] = job_code[4]; II Pos 5 of Job code to pos 3 of family

53

FIGURE 5.0 continued

/* Returns true if the employee 1s urnon 01l1er,;<11se returns false * i
boolean lslJnion ()
{

if (strncmp (family," 100" ,1)==0)
in_union = true;

else
{ if (strncmp (family,"200",1)==0)

in_union = true;
else

in_union = false:
}:

return in_union;
}

I* Prints 3 strings and I long integer * I
/* which am last name, first name, job code and ssn * /
void Print ()
{ cout << last_name <<" "<< first_name <<" "<< soc_sec_no

<< " "<< job __ code << " ";
}

}; II End of Class Employee Definition

class U n'ionEmp : Employee { II Class UnionEmp definition
private: II Accessible only to this class

double salary; II holds salary for a union Employee
double hours; II holds hours worked for a union employee
double tot_hours;II holds total hours
double otpay; II holds the calculated overtime pay amount
double totpay; // holds the calculated total pay amount
double othours; II holds the calculated overtime hours
double otrate; II holds overtime rate

public: II methods accessible by all classes
I* If 3 string and 3 numeric parameter is passed to the UnionEmp *I
I* constructor, the private fields will be set equal to the values passed * I
UnionEmp(char LastN ame[20], char FirstN amefl 5],

char JobCodc[5], long ssn, double sal, double hrs):
Employee (LastName, FirstName, JobCode, ssn)

{ otrate = 1.5;

}

salary = sal;
hours= hrs;
lot_hours = hours;

54

FIGl:RE 5.0 continued

void CalcPay()
{ othours = hours - 40:
if (othours < 0)

othours = O:

}

else
hours= 40:

otpay = (othours • otrate • salary);
totpay = (hours • salary) + otpay;

void Print()
{
Employee :: Print();
cout <<salary<<""<< tot_hours <<" "<< totpay <<""

<< otpay << "\n":
}
}; // End of class UnionEmp definition

class NonUnionEmp: Employee { // NonUnionEmp definition
private: // Accessible only to this class

double salary; // holds salary for a non-union employee
double hours; fl holds hours worked for a non-union employee
double tot_hours;// holds total hours
double otpay; // holds the calculated overtime pay amount
double totpay; // holds the calculated total pay amount
double othours; // holds the calculated overtime hours
double hrly _salary; // holds hourly salary

public: // methods accessible by all classes
/* If 3 string and 3 numeric parameter is passed to this construdor, * /

/* the private fields will be set equal to the values passed */
NonUnionEmp (char LastNamel2Ol, char FirstName1!5 l,

char JobCode[5J, long ssn, double sal. double hrs):
Employee (LastName, FirstName, JobCode, ssn)
{ salary = sal;

hours= hrs:
hrly _salary = hours / 40;

}

55

fIGLRE 5.0 continued

void CalcPay ()

}

{ othours = hours - 40;
if (othours < 0)

othours = 0;
else

hours= 40;
otpay = (othours * hrly __ salary);
totpay = (hours* hrly _salary) + otpay;

void Print ()
{

Employee::Print ();

}
cout << salary<< " " << tot_hours << '' " << totpay << "\n";

}; II End of class NonUnionEmp definition

I* Start of main pro gr am logic * I
main()
{
char ncwJn[201, new_fn(15], new_jcd[5 I:
double new sl new hr - ' - '
long new _ssn;
boolean uniontest;

56

FIGURE 5.0 continued

do { II start of loop through employee database

1• Construct a NewEmp object from the Employee class. *I
Employee NewEmp(new_ln, ncw_fn, new_jcd, new_ssn);

I* only print information on union employees * I
uniontest = NewEmp. fs[Joion();
if (uniontest == true)
{

}

UnionEmp NewUnionEmp (new_ln, new_ln, new_jcd,
new_ssn, new_sl, new_hr);

NewUnionEmp.CalcPay ();
NewUnionEmp. Print();

else
{

}
}

NonUnionEmp NewNonUnionEmp (new_ln, new_ln,
new_jcd, new_ssn, new_sl, new_hr);

NewNonUnionEmp. CalcPay ():
NewNonUnionEmp. Print();

while . . . II employee records remain

}

In this example program, the root class is named Employee and

derived from the root class Employee are the two sub-classes of

UnionEmp and NonUnionEmp. All of the methods (eg, .Employee,

CalcPay, and Prial) in the public section of the class Employee are

inherited by both class UnionEmp and class NonUnionEmp.

57

What follows are the four program maintenance areas listed in Figure 3.0.

FEWER FUNCTION NAMES TO REMEMBER AND COORDINATE

Most OOP languages allow methods within different classes to have

the same function name. In the example program in FIGURE 5.0, all

three classes have a method .Prial. Both the class U nionEmp and class

NonUnionEmp have a method Ca/cpay. In a program, when a

message is sent, the system is able to determine which method actually

needs lo be executed based on the object associated with the message.

For example, in the main program there are two lines of code that send

the message Ca/cpay as follows:

NewUnionEmp. Ca/cpay();
and

NewNonUnionEmp. Ca/cpay();

Object NewUnionEmp is an instance of class UnionEmp. Object

NewNonUnionEmp is an instance of class NonUnionEmp. The same

message of Calcpay is sent lo the different classes and the system takes

care of executing the correct method. To calculate pay for all possible

types of employees, the programmer has to remember only one message.

lbis capability is known as polymorphism and helps to simplify

program maintenance. Polymorphism is a feature of the language and is

more natural for the programmer than trying to make up new names for

each possible variation on the same basic function.

58

ACCIDENTAL MODIFICAllONS.

Care should be exercised when making modifications to a program

so that problems do not result from the modifications. OOP languages

have a feature of encapsulation that helps prevent accidental

modifications. Encapsulation limits access to the data and methods in a

class. Dy limiting the access, fewer classes and programs will have the

ability to modify data. Without access to data, it is impossible to

accidentally modify the data.

Lets take for example, the problem similar to the one described in

the error detection section of chapter 4 on maintenance in POP. The

programmer has been notified that the payroll calculation detail report is

showing incorrect overtime amounts for all union employees. In our

example in chapter 4, the error was a move in a non-union calculate

payroll paragraph that accidently reset the overtime rate field (otrate) for

union employees. In our example in FIGURE 5.0, this would not be

possible. The data field otrate is in the private area of the class

UnionEmp which means that no class outside of the class UnionEmp

has the ability to change this field. This language feature helps prevent

accidental modifications in OOP languages.

The programmer can cause errors in object oriented programs, but

the chances are significantly lower because of encapsulation. If a

program or class cannot access certain data, it would not be able to

accidently modify that data.

59

ERROR DETECTION

Finding errors in programs can be a difficult and time consuming

task. Fortunately the OOP language feature of encapsulation has helped

decrease the time it takes to find errors. Encapsulation, both groups the

data and methods together into one class and provides controlled access

lo the data and methods which helps in error detection.

For an example of a program bug for the object oriented program in

FIGURE 5.0, suppose there is an error in the method Cale.Pay in the

class UnionEmp. The formula contains a typographical error. The

statement should have read as follows :

totpay = (hours * salary) + otpay

Instead, the leading "t" was left off the field totpay as follows :

otpay = (hours * salary) + olpay

• I be method Iha! prints the union detail report line is found in the class

UnionEmp. lbe fields that are printed on the report are either passed to

the constructor method llmo.aEmp or they are calculated values within

the class UnionEmp. Since the field printed in error was both totpay and

olpay, lhe only lwo possibilities are that either incorrect information was

passed to the constructor or that methods and/or data within the class

UnionEmp definition are incorrect. lbe maintenance programmer would

probably first look at the class U nionEmp and the method Cale.Pay and

should then see the mistake.

60

With encapsulation, the programmer is more quickly able to narrow

down the possible locations that may have caused a problem. This

certainly reduces the time spent on error detection and correction which

reduces program maintenance time. Encapsulation is a lang11age feature

that is a natural part of programming in OOP languages.

CHANGE CONTROL

Encapsulation is also a helpful language feature in relation to

program changes.32 With encapsulation, since data and method access is

controlled by the class, it is fairly easy to determine what impact there

would be if a change must be made to the class.

As an example, lets assume the change as described in the change

control section of chapter 4 where the job code field positions 3 through

5 can no longer be used directly to determine whether or not an

employee is union. In FIGURE 5.0 the class Employee has a method

IsUoioo that must be modified to accept the new method of determining

if an employee is union. Assuming that all object oriented programs

within the company use the class Employee and the method IslJoioo,

no programs other than the class Employee should have to be modified.

The code modifications are isolated to one method in one class. No

32Qne programmer from McDonnell Douglas specifically mentioned
encapsulation as being very effective at locali7ing programming changes.

61

programs outside the class Employee had to understand the way the

class Employee determines an employee was union. 'This change which

can be a major impact in POP languages was a minimal change to this

object oriented program. 'Ibe new class definition would look as found

in FIGURE 5.1 with the changes in bold and italics.

FIGURJ~ 5.1 - Employee Payroll Report in C++ with Job Family change

#include <iostream.h> II 110 areas
/* Beginning of Class Employee definition */
enum boolean {false, true}; //false= 0; true= 1
class Employee { // Class Employee definition
private: // Accessible only to this class
char *last_name; // pointer to last name
char *first_name; // pointer to first name
char *job_code; II pointer to job code
char grade[2]; // 2 character string for job grade
c/Jar .lie.ld/2 _/; II .l cliduch!r Jtring for job fie/ti
c/Jar fao,_iodx II I cliduch!r siring for fi11111'!Y fdble indez
char family[3]; II 3 character string for family from table
long soc_sec_no; II Long int value for social security number
boolean in_union; // Boolean that tells if employee is in union

public: II methods accessible by all classes
/* If 3 string and 1 numeric parameter is passed to this constructor, * I
I* the private fields will be set equal to the values passed */
Employee(char ln[20], char fn[15], char jcd[5], long ssn)
{

last_name = In; // Copies name parm to private data item
first_name = fn; II Copies name parm to private data item
job_code = jcd; // Coptes job code parm to private data item
soc_sec_no = ssn; // Copies soc sec no parm to private data item
/* Job grade is the same as the first 2 positions of job code *I
grade[0] = job_code [0]; II Position I of Job code to position I of grade
grade[1] = job_code [1]; II Position 2 of job code to position 2 of grade

62

FIGLRE 5.1 continued

}

/* Job family is the Sdme as the last 3 positions of job code *I

field/OJ= job_code/2/; II Position J of JOb code to pos. 1 of lam1ly

lreld/1/ = job_codc/3/: II Position 4 of]Ob code to pos. ~ of family

I"°"-._iodx/0/ = jo/J_code/4/; II Position 4 of job code to pos. 2 o[family

I* Returns true if the employee is union otherwise returns false •I
boolean JsUoioo();

{
/' code goer here to sedrch the fdmily tdble ford mdtcb */
/* on the fdm1(Y code. The Vdlue from the fdb/e sedrcb '°/
/' ir moved to the field fdmI{Y 3/

}

if (stmcmp (family,"100",3) == 0)
in_union = true;

else
{
if (strncmp (family,"200",3) == 0)

in_union = true;
else

in_union = false;
};

return in_union;

/* Prints 3 strings and 1 long integer • I
I* which are last name, first name, job code and social securitynumber*I
void Print ()
{

}

};

cout << lasl_name << " " << first name<<" "
<< soc_sec_no << " "<< job_code << "\n" ;

II End of Class Employee Definition

63

SUMMARY

In summary. object oriented languages have language features that

help reduce program maintenance time. Polymorphism helps reduce the

work that a programmer must do to determine which of the similar

functions is needed to perform a Lask. Sc vcral similar functions acting on

different classes can all have the same name (i.e .. function overloading)

and the system will determine for the programmer which of the functions

should be executed. Encapsulation helps prevent accidental

modification of data since classes and programs are restricted from

accessing many data items in other classes. With no access, it is

impossible to modify the data. Encapsulation helps the programmer

detect errors quickly since the error is isolated and the programmer can

quickly narrow the possible areas that would have had access to the data

or method. Encapsulation is also helpful when making changes to a

class. Usually only the class and its sub-classes will require a change.

Other classes and programs usually require no change at all. Since

polymorphism, encapsulation and function overloading are features of

the OOP language. they will be used by the programmer more naturally

then forcing the use of a programming technique.

64

CHAl'lER 6

CODF. REUSF OVERVIEW

Code reuse can be accomplished in many different ways. Anytime

code from an existing application is used lo develop a different

application, code reuse has taken place. Some examples are:

(1) Use existing functions by copying the code into the program.
The common function becomes part of the new source program.

(2) Use the copy statement to copy the source in at compile lime.
The common function is not part of the new source program but
is part of the object code for the new program.

(3) {Jse the call statement to run common functions from a run-time
library. Both source and object for the common function are
separate from the new program calling the common function.

(4) Develop new code that inherits data and methods from existing
code.33

The above examples can be accomplished with programming

techniques and language features available to both procedure oriented

programming (POP) and object oriented programming (OOP).

During my research for this thesis, I talked with several

programmers who said there was an unspoken understanding in their

organization that code reuse was expected of them. In some cases the

programmers even received training in the area of code reuse.34

33 Daniel G. Bobrow, "The Object of Desire". Datamation. 1 May 1989,
page 38.
34 At least one programmer from both McDonnell Douglas and AT&T
had attended a company sponsored class where code reuse was part of
the training.

65

Only the programmers using OOP felt that code reuse has been

successfully used, in their work environment. JS Regardless of the

programming style, there are some general reasons to explain why code

reuse is either not working or why it is only moderately successful.

Some of those explanations are:36

(1) The programmer is not aware that a common function exists or is
not able to easily find the name of the common function.

(2) 'lbe programmer has a lack of confidence in the existing common
function.

(3) The function needs to be slightly modified to suit the new code
and rather than modifying the existing function lo make it more
generic, a new function is created.

As we have seen, program maintenance is the major cost for

programming shops today. Code reuse will not only help reduce

development time on new software but it can also help reduce

maintenance costs on old software for the following reasons:37

(!) Shared common functions result in fewer lines of code to
maintain.

(2) The accuracy of the reused code is greater than the accuracy of
programs coded from scratch. Reused code will have gone
through more complete testing then the code developed from
scratch. The more a piece of code is reused, the better the
chances for working out all of the bugs.

35 At least one programmer from McDonnell Douglas, AT & T, and
Computer Artisans felt that code reuse has been successful from them.
36 Ted .T. Biggerstaff and Alan J. Perlis, Software Reusability:
Applications and Experience. Addison-W eslc y Pub. Co., 1989, page 2.
37 Will Tracz, Sortwarc Reuse : Emerging Technology. IEEE Computer
Society Press, 1988, page 35.

66

(3) Programs will follow a standard inted'ace to a piece of reusable
code. A new piece of reusable code will have the same inted' ace
to the program as the old code. Here we only have to recompile
the module that we changed and not each of the programs that
use it.

Code reuse is an important part of the fight to reduce the cost of

program maintenance. The options available to promote code reuse are

the same options available lo reduce program maintenance.

(1) lhe programming tools· lo improve location and retrieval of
common functions.

(2) Make sure programmers use the l30guage tec/Jmques aodkatures
available for the chosen language.

(3) (noosing a diDc.rent language or style o/'/angtJagc to find one
better able to promote code reuse.

PROGRAMMING TOOLS

One or lhe problems mentioned earlier is that programmers are not

aware of existing common functions or they do not know the names of

the functions. This can be partially solved by the use of commercially

available library tools. ~!any of these tools have search capabilities to

help in locating the function needed by a programmer. Without this type

of Looi it may be difficult to store and easily find a common function that

will fit the needs of a new application. The programming tools that allow

storage and easy re Irie val of common functions will help only if these

functions are kepi in libraries accessible to other programmers.

67

lTCII'.',"IQL'ES A:'\iD FEAI1:RES

A person should always program as though the code being

developed will probably be reused. If a function being developed has

potential for being reused, the development programmer should design

the function so it can be easily reused. Tbe design should include the

following:

(1) Plan for future problem domains
(2) Good documentation

Plan for future problem domains

'Tbe programmer must use planning lo develop code that can be

easily reused. ·ine programmer must think ahead about what pieces of

information in the current problem domain may not be exactly what will

be needed by any future problem domains. If some of this variable

information is passed into the program using parameters rather than

hardcoding the information, the code will be usable for more applications

than il would have been with the hardcoding.

Good documentation

Good documentation is important in code reuse. Regardless of the

language style and the method of reuse, the development programmer

needs to document each of the following that applies :

(l) The purpose of the task (implemented as a function or
procedure.)

(2) The variables that must be defined.
(3) The type and number of parameters that must be used.
(4) "!be data and methods if any that can be inherited.

68

This constitutes a clear dcfinitmn of the formal and actual parameters that

allow communication between a main program or a sub-program and a

function or procedw-e. This type of documentation called an interface

specification, is a technique that can be applied to the language. It can

help other programmers decide if a function or procedure will fit their

programming need and at the same time provide information to the

programmer on how lo use the function or procedure.

There are some inherent language styles that promote code reuse by

providing language features38 such as inheritance and templates in OOP.

It is much better to have language features that promote the reuse of code

rather than forcing the programmer to remember to apply techniques to

the language. Even though a language feature may be more successful

for code reuse than a programming technique, they can be used together

to more strongly support code reuse.

CHOOSING A DIFFERENT LANGUAGE

Since code reuse can help dramatically reduce program

development and program maintenance time, it is strongly suggested that

a programming shop use the language best able lo promote code reuse.

U code reuse has not improved after using the tools, techniques and

features of the chosen language, the programming shop should consider

choosing a different language. lhls may be as minor as going from one

38 Ted .T. Biggerstaff and Alan J. Perlis, Software Reusability: Concepts
and Models, Addison-Wesley Publishing Company, 1989, page 36.

69

procedure oriented language to another or as major as going from a

procedure oriented language to an object oriented language.

SFMMARY

• fhere will always be some programmers that will resist code reuse,

but for the most part, if programmers arc using a language that has

features to inherently promote reuse, it will start to happen since less

effort is required of the programmer. In summary, chapters 7 and 8 will

deal with the differences between OOP and POP that causes OOP to be

more successful at code reuse. FIGURE 6.0 lists two areas where code

reuse is handled differently in OOP and POP.

FIGURE 6.0

(1) Writing reusable code.
(2) Making minor changes to reusable code.

70

CIW7 l'ER 7

CODE REUSE IN POP

Code reuse in procedure oriented languages has not been very

successfu!.39 'Ibis style of language does not inherently promote code

reuse. Instead, the demand is on the programmer to use techniques to

reuse existillg code. This chapter will look at procedure oriented

programming (POP) and how it addresses the two areas of code reuse as

identified in flGURE 6.0.

To continue our payroll example from Figure 4.0 in Chapter 4, a

common function could be written to calculate the weekly pay. This is

especially useful if other programs will need to do the same calculation

and can take advantage of reusing this function.

WRTI'ING REUSABLE CODE.

To write reusable code. the programmer must try to keep the

function general enough so that it can handle simple variations of the

main function. For example, a calculate pay function must be able to

39This seems to be agreed upon by current articles and programmers
actually trying lo reuse POP code.
Grant Buckler, "OOP is more than a buzzword", Computing Canada,
September 1991, page 31.
All programmers using POP agreed that code reuse is either moderately
effective or not very effective in their organization. These programmers
were from JWP Controls, McDonnell Douglas. Home Savings of
America, and Tripos.

71

handle JilTerenl salaries, salary formals, hours worked and overtime rates

by accepting these values as variables or parameters. In our problem

domain. the salary for union employees is stored in an hourly formal aud

the non-union employee's salary is stored in a weekly format. To be able

to determine the salary formal, the job family will also be treated as an

input variable or parameter. A technique to naming variables in COBOL

is to prefix the name with 100 or 200 to distinguish an input variable or

parameter from an output variable or parameter. The input variables or

parameters will be as follows:

(1) The salary will be named 100-SALARY.
(2) The hours worked will be named 100-HOURS.
(3) The job family will be named 100-FAMILY.
(4) The overtime rate will be named 200-0TRATE.

The output of the function would be the calculated pay for the employee.

Output variable:; or parameters will have the prefix of 300.

(5) ')be total pay will be named 300-TO'TPAY.
(6) Tbe overtime pay will be named 300-0TPA Y.

COBOL does not distinguish between input and output parameters.

'Ibere is no way in COBOL to prevent the function from making changes

lo the input variables.

FIGURE 7.1 below shows the calculate pay paragraph as reusable

COBOL code.

72

H<.iURE 7.1 - Calculate Pay COHOL paragraph in reusable code

0000-CALCPAY

IF 100-88-UN!ON-EMPLOYEE
MOVE 100-SALARYTO 200-SALARY

ELSE
COMPUTE 200-SALARY = 100-SALARY / 200-FULLTIME-HOURS.

COMPUTE 200-OTHOURS = 100-HOURS- 200-FULLTIME-HOURS.
IF 200-OTHOURS < 0

MOVE OTO 200-OTHOURS
MOVE 100-HOURS TO 200-HOLD-HOURS

ELSE
MOVE 200-FULLTIME-HOURS TO 200-HOLD-HOURS.

COMPUTE 300-OTPAY =
200-SALARY * 100-OTRATE • 200-OTHOURS

COMPUTE 300-TOTPAY =
200-SALARY • 200-HOLD-HOURS + 200-OTPAY.

In POP, and in particular COBOL, the programmer will choose one of

the following formats of making this code available for reuse40 :

(1) COPY command.
(2) CALL command.

Copy command

With the source code for a COilOL function stored in a source

library, the programmer can use the COPY command to bring the source

into the program at compile time. This copy member usually does not

contain all of the divisons required to make a complete COBOL program.

It is meant to be copied into a program that already has the required

40Tom Caldwell, "Putting Effective Maintenance into Practice",
Computing Canada. 25 October 1990, page 44.

73

COBOL di~isions. These required divisions include the

IDENTlFICATlON DIVISION, ENVIRONMENT DIVISION, DArA

DIVISION and PROCEDURE DIVISION. 'l11c code in HG URE 7.1

would be stored in a source library with the member name of

CALCPA Y. Ail of the variables mentioned in 0000-CALCPA Y must be

defined in working storage of the main program (i.e. 100-SALARY, 100-

11O CRS, 100-FA.\ilLY, 200-OTRAIE, 300-TOTPAY, 300-OTPAY,

ETC.). To copy the source into the main program, the following

command should be found in the PROCEDURE DIVISION inrmediately

following the paragraph that performs 0000-CALCPA Y. The copy

command would look as follows:

COPY CALCPA Y FROM Jilmuy-oame.

74

The source for the main program and the source for the CALC PAY

function arc stored separately but thev are brought together at compile

time as seen in FIGURE 7.2.

FIGURE 7.2 - COPY COMMAND COMPILE DIAGRAM

Mam Program
Source Code

Main Program
and

Sub-program
Object Code

Su b-pru gr am
Source Code

Ibe copy command is used quite often at McDonnell Douglas

Aerospace Information Services with its COBOL programs. In fact, they

even wrote a COBOL pre-processor to improve the use of the copy

command. The pre-processor allows the programmer to use a file layout

that contains asterisks where the numeric prefix would normally be. The

preprocessor changes the asterisks to a numeric prefix requested in the

copy statement.

COPY EMPLOYEE PREFIX=l00 LIB=PROD

75

l'herefore a line of code ***-NAtvfE, from the file layout EMPLOYEE,

would be modified using the preprocessor to be 100-NAME. ·Ibis

allows flexibility to the copy library members.

FIGURE 7.3 below shows a sample main program that uses the

CALCPAY reusable code in copy form.

FIGURE 7.3 - Main program that has Copy command

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.

FD REPORT-FILE
DATA RECORD IS REPORT-RECORD.

01 REPORT-RECORD PICX(133).
FD INPUT-FILE

DATA RECORD IS INPUT-RECORD.
01 INPUT-RECORD PICX(80).

* 'The data area is in the working-storage section.
WORKING-STORAGE SECTION.

01 JOO-EMPLOYEE-RECORD.
05 100-LAST-NAME
05 100-FIRST-NAME
05 100-DEPARTMENT
05 100-JOB-CODE.

PICX(20).
PICX(15).
PICX(04).

10 100-GRADE PICX(02).
10 100-FAMIL Y PIC X(03).

88 100-88-UNION-EMPLOYEE

05 100-SSN
05 100-SALARY
05 100-HOURS

PIC 9(09).
PIC 9(6)V99.
PIC 9(3)V99.

VALUE "100",
"200".

76

FIGCRE 7.3 continued

0 I 200-HOLD-ARE,\S
05 200-OTRA TE
US 200-HOLD-HO URS
05 200-OTHOURS
05 200-UNION-OTRATE
05 200-NONUN!ON-OTRATE
05 200-FULLTIME-HOURS

01 300-CALCULATED-AREAS.
05 300-OTPAY
05 300-TOTPAY

PIC 9(3)V99
PJC 9(3)V99
P!C 9(3)V99
PIC 9(3)V99
PIC 9(3)V99
PIC 9(02)

PIC 9(6)V99
PIC 9(6)V99

VALUE 0.
VALUE 0
VALUE0
VALUE LS.
VALUE 1.0.
VALUE 40.

VALUE0
VALUE0

• The mdinprogram ctnd paragraphs are found in the procedure division.
PROCEDURE DIVISION.
00U0-MAINLINE.

PERFORM 1000-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS

UNTIL 200-END-OF-FILE = "YES".
PERFORM 3000-TERMINAT!ON.

1000-INITIALIZA TION.
• OPEN FILES, DO INITIAL READ

2000-PROCESS-EMPLOYEE-RECS.
IF 100-88-UNION-EMPLOYEE

MOVE 200-UNION-OTRATE TO 200-OTRATE
ELSE

MOVE 200-NONUNION-OTRATE TO 200-OTFATE
PERf"ORM 0000-CALCPAY.
PERFORM 2200-PRINT-REPORT
PERFORM 3000-READ-EMPLOYEE-REC

COPY CALCPA Y FROM PROD LIB.

2200-PRINT-REPORT
• BUILD AND PRINT REPORT LINE

8000-READ-EMPLOYEE-REC
• READ AN EMPLOYEE RECORD

3000-TERMINATION.
• CLOSE FILES AND DISPLAY COUNTERS

77

Call command

The second fonnat of making code available in a run-time library is

the CALL command. A run-lime library is a collection of compiled

programs. A compiled version of a function can be saved in the nm-time

library so the object coue is available for reuse. The object code for the

main program and the ob_ject code for the CAI~CPA Y function are stored

separately and brought together at run time as seen in FIGURE 7.4.

FIGl:RE 7.4 - CALL COMMAND COMPILE AND RUN DIAGRAM

11am Program Sub--progr ii.Bl

Source Code Source Code

l COMPILER I I COMPILER

Jlai.u Progr1.m Sub-pro gr 4111

Object Code Object Code

~ /
Run-time Execution
Acts u one object

Because the compiled main program and the compiled reusable function

are stored separately, the data must be passed into the function from the

main program through the use of parametcis. Careful use of parameters

can lead to functions easily reused by a variety of different applications.

78

COBOL lists parameters in the main program mrn1ediately following the

USING statement of the CALL command. An example main program

that uses a call statement is shown in FIGURE 7.5, shows the parameters

passing data into the sub-program arc JOO-HOURS. 100-SALARY, 100-

b\1\HL Y, and 200-OTRATE. The parameter passing data from the sub­

program to the main program is 300-TO1PA Y and 300-OTPA Y.

FIGURE 7.5 - Main program that has Call command

IDENTIFICATION DJVISJON.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.

FD REPORT-FILE
DATA RECORD IS REPORT-RECORD.

01 REPORT-RECORD PICX(133).
FD INPUT-FILE

DATA RECORD IS INPUT-RECORD.
01 INPUT-RECORD PICXj80).

* The data area is in the working-storage section.
WORKING-STORAGE SECTION.

01 100-EMPLOYEE-RECORD.
05 100-LAST-NAME
05 100-FIRST-NAME
05 100-DEPARTMENT
05 100-JOB-CODE.

to 100-GRADE
10 100-FAMILY

88 100-88-FAMILY

05 100-SSN
05 100-SALARY
05 100-HOURS

PICX(20).
PICX(lS).
PICX(04).

PICX(02).
PICX(03).

PIC 9(09).
PIC 9(6)V99.
PIC 9(3)V99.

VALUE "100",
"200".

79

FIGL'RE 7.5 continued

01 200-HOLD-AREAS.
05 200-OTRATE
05 200-HOLD-HOURS
05 200-OTHOURS
05 200-UNION-OTRATE
05 200-NONUNION-OTRATE
05 200-FULLTIME-HOURS

01 300-CALCULATED-AREAS.
05 300-OTPAY
05 300-TOTPAY

PROCEDURE DIVISION.
0000-MAINLINE.

PIC 9(3jV99
PIC 9(3)V99
PIC 9(3)V99
PIC 9(3)V99
PIC 9(3)V99
PIC 9(02)

PIC 9(6)V99
PIC 9(6)V99

PERFORM 1000-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS

UNTIL 200-END-OF-FILE = "YES".
PERFORM 3000-TERMINATION.

10 0 0-l N ITIALIZATI ON.
• OPEN FILES, DO INITIAL READ

2000-PROCESS-EMPLOYEE-RECS.
IF 100-88-UNION-EMPLOYEE

VALUE 0.
VALUE0
VALUED
VALUE LS.
VALUE LO.
VALUE 40.

VALUE 0.
VALUE0

MOVE 200-UNION-OTRATE TO 200-OTRATE
ELSE

MOVE 200-NONUNION-OTRATE TO 200-OTRATE

CALL CALCPAY USING 100-SALARY
100-HOURS
100-FAMILY
200-OTRATE
300-TOTPAY
300-OTPAY.

PERFORM 2200-PRINT-REPORT
PERFORM 8000-READ-EMPLOYEE-REC.

2200-PRINT-REPORT
* BUILDS REPORT LINE AND PRINTS.

8000-READ-EMPLOYEE-REC
• READ AN EMPLOYEE RECORD

3000-TERMINATION.
• CLOSE FILES AND DISPLAY COUNTERS

80

In the sub"program, parameters arc listed following the USING

statement in the PROCEDURE DIVISION statement and they arc defined

in the LINKAGE SECTION. The order of the parameters in the sub­

program must match the order of the parameters in the main program. As

stated earlier, the compiled version of the CAL CPA Y function will be

stored in a run-time library for reuse. FIGURE 7.6 shows the source

code for the sub-program CALCPAY.

FIGURE 7.6 - Sub-program for calculating pay (CALCPA Y)

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION
FILE SECTION.
* Tbe data area is in the working-storage section.
WORKING-STORAGE SECTION.

0 I 200-HOLD-AREAS
OS 200-FULLTIME-HOURS
OS 200-HOLD-HOURS
OS 200-OTHOURS

LINKAGE SECTION.

PIC 9(3)
PIC 9(3)V99
PIC 9(3)V99

01 100-SALARY PIC 9(6)V99.
01 100-HOURS PIC 9(3)V99.
01 100-FAMIL Y PIC X(03).

88 100-88-UNION-EMPLOYEE

01 200-OTRAlc
01 300-TOTPA Y
01 300-OTPA Y

PIC 9(3)V99.
PIC 9(6)V99.
PIC 9(6)V99.

VALUE 40.
VALUE 0.
VALUE 0.

VALUE "100",
·200·.

81

FIGLRF 7.6 continued

PROCEDURE DIVISION USING 100-SALARY
100-HOURS
100-FAMILY
200-OTRATE
300-TOTPAY
300-OTPAY.

0000-CALCPAY

IF 100-88-UNION-EMPLOYEE
MOVF. JOO-SALARY TO 200-SALARY

ELSE
COMPUTE 200-SALARY =JOO-SALARY/ 200-FULLTIME-HOURS.

COMPUTE 200-OTHOURS = 100-HOURS - 200-FULLTIME-HOURS.
1F 200-OTHOURS < 0

MOVE OTO 200-OTHOURS
MOVE 100-HOURS TO 200-HOLD-HOURS

ELSE
MOVE 200-FULLTIME-HOURS TO 200-HOLD-HOURS.

COMPUTE 300-OTPAY = 200-SALARY * 200-0TRATE * 200-OTHOURS
COMPUTE 300-TOTPAY = 200-SALARY * 200-HOLD-HOURS + 300-OTPAY

**'* GOBACK means to return from the called program
GOBACK.

Comparing copy and call commands.

1bere are advantages to both the COPY and CALL statements.

Each situation must be evaluated separately to determine which method

would be best.

Using the COPY command rather than the CALL command will

result in faster run-time. With the COPY command, the reusable code is

part of the object code for the main program so the system does not have

to search for the object form of the reusable code at run-time. With each

82

CALL sl.ilcmeut, the svstcm lta,, lo search through a run-lime library for

the reusable object code. If the function is to be used frequently, the

programmer should probably consider making the source available with

a COPY statement.

Using the CALI. command will make the reusable code more

flexible to changes. ff a change needs to be made to the reusable code.

the code can be modified, recompiled and put back into the run-time

library. Most likely no change will need lo be made lo the programs that

reuse this code. If a COPY command was used and the reusable code

had to change. each program that uses this reusable code would have lo

be recompiled. If the reusable code is expected to change very often and

if a large number of programs share this code, the programmer would

probably want to consider using the CALL statement.

With either method, the function should be cohesive so that it

performs only one task. and it should be clearly documented so it is clear

to all progra=ers the purpose of the function. Depending on the needs

of the application, the reusable code could be made available in either or

both methods.

MAKING MINOR CHANGES TO REUSAHI.E CODE.

Lets assume that a progra=er was told that managers would no

longer be paid for working overtime hours. Regardless of how many

hours worked for the week.. a manager will always receive pay equal to

one weeks salary. In our example problem domain, we were able to

83

identify union employees as having a job family of" 100" or "200" . .\ow

lets assume that managers can be identified as having a job family of

"900". All managers will receive their W!!ekly ~alary regardless of

whether or not they work overtime. The reusable code written above in

paragraph 0000-CALCPA Y will work for the calculation of managers

pay with only a few modifications. lbere are two techniques that will

allow the programmer to reuse the above code.

(1) Modify the existing code to work for both the existing and
new applications.

(2) Copy the existing code to a new program and modify it to
meet the needs of the new application.

Modify the existing code

Modifying existing code has an advantage of fewer lines of code

since the parts of the code that are common can be shared by many

applications. Less code usually means less maintenance work since there

will be fewer untested conditions to cause future problems. If there is

only one calculate pay function, a correction would have to be made in

only one function rather than multiple functions. Code was added lo the

84

callable function from FIGURE 7.6 and the result can be lound i11

FIGURE 7.7 with the changes in bold letters:

FIGURE 7.7 - Sub-program for calculating pay with Manager
modifications

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.
* The data area is in the working-storage section.
WORKING-STORAGE SECTION.

01 200-HOLD-AREAS
05 200-FULLTIME-HOURS
05 200-HOLD-HOURS
05 200-OTHOURS

LINKAGE SECTION.
01 100-SALARY
01 100-HOURS
01 100-FAMILY

88 100-88-UNION-EMPLOYEE

88 100-88-MANAGER
01 200-OTRATE
01 300-TOTPAY
01 300-OTPAY

PIC 9(3)
PIC 9(3)V99
PIC 9(3)V99

PIC 9(6)V99.
PIC 9(3)V99.
PICX(03).

PIC 9(3)V99.
PIC 9(6)V99.
PIC 9(6)V99.

VALUE 40.
VALUE 0.
VALUE 0.

VALUE "100",
"200".

VALUE "900".

85

FIGl;RE 7.7 continued

PROCEDURE DIVISION USING 100-'SAU,RY

0000-CALCPAY.

IF 100-88-MANAGER
NEXI" SENl1~NCE

ELSE
IF 100-88-UNION-EMPLOYEE

100-HOURS
100-FAMILY
200-OTRATE
300-TOTPAY
300-OTPAY

MOVE 100-SALARY TO 200-SALARY
ELSE

COMPUTE 200-SALARY =JOO-SALARY/ 200-FULLTIME-HOURS.

lF 100-88-MANAGER
NEXT SENTENCE

ELSE
COMPUTE 200-OTHOURS = 100-HOURS - 200-FULLTIME-HOURS
IF 200-OTHOURS < 0

MOVE OTO 200-OTHOURS
MOVE JOO-HOURS TO 200-HOLD-HOURS

ELSE
MOVE 200-FULLTIME-HOURS TO 200-HOLD-HOURS.

IF 100-88-MANAGER
MOVE 100-SALARY TO 300-TOTPAY
MOVE ZERO TO 300-OTPA Y

ELSE
COMPUTE 300-OTPAY =

200-SALARY • 300-OTRATE • 200 OTHOURS
COMPUTE 300-TOTPAY =

200-SALARY • 200-HOLD-HO URS+ 3110-OTPAY

GOBACK.

Copy existing code to create a new program

The second technique for code reuse is lo simply create a new

program from the existing program. If a new calculate pay function were

created for each type of employee, there would need to be 3 separate

86

functions that were very similar. We would have a separate function for

calculating pay for union, non-union and manager type employees. Each

of these smaller and more easily understood functions would be less

complicated then the one large function written above. Easy to

understand functions are certainly easier to maintain then complicated

functions. Another advantage to having separate functions is that a

change to one function will not cause bad reactions to the other related

but separate functions. Yet a disadvantage is that many smaller but

similar functions can be difficult to keep track of and coordinate. One

department at McDonnell Douglas has documented standards promoting

the concept of copying existing code to create a new program. This

concept is only working moderately well because many of the

programmers do not take the time to copy and document their code into

the code reuse library. Because there is not much code available in the

library, many programmers don't even take the time to look there or they

often forget it even exists.

87

SUMMARY

The POP technique of creating separate functions copied from an

existing function is the simpliest and probably the most common form of

code reuse. It takes a lot of effort for a programmer to develop a generic

function that can be reused for multiple applications. Programmers don't

want to get involved with modifying a function to make it work for his

application and make sure it will still work for all the other applications

that are already using it. For this reason programmers will usually just

make a copy of the function and modify the copy for the use of the new

application. 'Ibe result is overcrowded libraries that become difficult to

maintain. The ideal situation would be to have as few a functions as

possible by modifying reusable code when necessary. When the

reusable code starts to reach the point of becoming too complicated, a

separate function should be written and the existing reusable function

should be left as it was. The techniques of modifying existing code or

creating a new function can both be used successfully in code reuse.

Using either technique is better than coding the function from scratch.

88

CHAPTER8

CODE REUSE IN OOP

In object oriented languages, code reuse has been fairly

successful. 4 I 'Ibe success of code reuse in this language style is because

object oriented programming (OOP) inherently encourages code reuse.42

This chapter will look at OOP and how it addresses the two areas of code

reuse as identified in FIGURE 6.0.

WRIT1NG REUSABLE CODE.

To write reusable code the programmer must plan the design of the

code so that many different applications can take advantage of reuse. It is

rare that ccxle can coincidentally be reused. In most cases ccxle that is

successfully reused was specifically planned for reuse. OOP has features

built into the language that help in the design and programming of

4 IThis seems to be agreed upon by current articles and programmers
actually trying lo reuse OOP code.
Grant Buckler, "OOP is more than a bu7LWord". Computing Canada.
September 1991, page 31.
Stuart Johnston, "OOP Hailed as Way of the Future". InfoWorld. 15 May
1989, page 17.
All programmers using OOP agreed that ccxle reuse is either moderately
effective or very effective in their organization. These programmers were
from McDonnell Douglas, AT&T, and Computer Artisans.
42Alan Snyder, "Encapsulation and Inheritance in Object-Oriented
Programming Languages", OOPLSA '86 Proceedings, 1986, page 38.

89

reusable code. In particular the following two OOP language features arc

useful:

(1) Inheritance
(2) Templates

Inheritance

When a new ciass is derived from a root class, the new class is said

lo have inherited data and methods from the root class. Any data and

methods found in the protected and public areas of the root class can be

reused by the derived class. When data and methods are inherited from

the root class, this means that the code defining the data and methods

does not have to be repeated in the derived class for the derived class to

use them. Inheritance has the following benefits :

(1) Less coding is required since some of the data and methods for
the class can be taken from the root class.

(2) I ,css testing is required since the inherited data and methods
have already been tested by other programs.

(3) Fewer lines of code to maintain since the classes that were
developed contain only the data and methods that make the
derived classes different from their root classes.

In the Employee example of inheritance in fTGlJRE 2.4 of chapter

2, the derived class UnionEmp was created from the root class

Employee. As you can see in FIGURE 8.1, union employees arc a

special type of employee with only a few differences that make it unique

from other types of employees. 'lbe differences between the class

90

Employee and the class UnionEmp are the follo\\'ing:

(1) A formula to calculate the weeks pay.
(2) The union number and OTPA Y for union members must be

printed on the report.

FIGURJ: 8.1 - Class Employee, UnionEmp, and NonUnionEmp

UnionEmp

UnionE•p
C,1/cP,1y

Print

class UnionEap inherits method,
F•ployee, I.rUllitm BIii .Print

fro• clus Eaployee

Employee

E•pfoyee
ADnion
Prmt

HonUnionEap

NonUIZionE•p
Cdd',1.T
.Priill

class BnnUnionEmp inherits ■ethods

F.-Jll"Tee, I.rUnitn1 tllld .Prinf

fio• class Eaployee

A class was defined to relate union employees from the root class

Employee. Class UnionEmp was able to mherit the methods IsUI1iOI1

and .fun/from class Employee. In addition to the print method that it

inherited, class UnionEmp will have its own print function. Class

UnionEmp has access to the salary and hours worked for the union

employee. Since these lwo fields are not accessible to lhe class

Employee they must be printed from the class UnionEmp. Since union

employee's weekly pay is calculated differently than other employee's

weekly pay, the class UnionEmp should also have its own method lo

calculate pay. This example has only a few functions to help make il

91

I

easier lo follow and understand. 'I bere could have very easily been

several methods and data that could have been inherited which could

have saved even more coding.

Code reuse through inheritance happens often in OOP since it

occurs each time a derived class is created. The language feature of

inheritance lets code reuse happen naturally without much effort on the

part of the programmer. Since the development programmer will benefit

from code reuse and since it happens naturally from using the language

feature of inheritance, code reuse is very common in OOP.

TEMPLATES

A function usually contains code to perform an action on one

specific type of data. A function template can be defined that will let one

set of code work for multiple types of data. Without templates, if the

same action needed to be performed on different types of data, a separate

function would have to be written for each data type. Templates allow

the programmer to design a generic function that can perform a specific

action on any type of data. A parameter is passed to the function that

defines the type of data that the function should process. Stuart Johnston

writes about Unix Systems Laboratories:43

"[Template] enhances one of object oriented prog.raroroing's
most touted advantages over traditional languages - greater
code reusability ... Adding an even higher degree of code
reusability results in fewer errors and lower development,
testing, and maintenance costs, the company said."

43 Stuart J. Johnston, "C++ 3.0 ·templates' give greater code reusability",
INFO World. 14 October 1 991.

92

I

The benefits of using function templates are as follows:

(!) Less coding is required since only one function must be
written to perform the same action regardless of the data type.

(2) Less testing is required since the template would have already
been tested with ulher data.

(3) Fewer lines of code must be maintained since a single function
can be used for multiple type of data.

FIGURE 2.8 shows a function template called "min" that finds the

minimum value in an array of numbers, regardless of the type of numbers

that are in the array. FIGURE 2.6 performs the same task as found in the

template of FIGURE 2.8, except that HGURE 2.6 can only process an

integer array. FIGL'RE 2.7 performs the same task as found in the

template of FIGURE 2.8. except that FIGURE 2.7 can only process a real

array. By using the template and having only one function instead of

two, the programmer has 50% fewer lines of code to maintain. This has

the advantage of the same logic being located in one place.

Both inheritance and templates arc language features available in

OOP that allow a programmer to reuse code. Inheritance has been

available to 00 P since the creation of the language style and has been

successful at helping programmers to reuse code. Templates on the other

hand are fairly new to some OOP languages like C++ and have not been

widely used in the real world. fradc magazines44 and reference manuals

feel that templates will soon be a big help to the industry in developing

reusable code.

44 Stuart J. Johnston "C++ 3.0 'templates' give greater code reusability",
INFO WORLD, 14 October 1991.

93

.'.v1AKlNG MINOR CllAi\/GES TO RELSABLE CODE.

If a programmer was able to find a class that was almost exactly the

same as what is needed, the code from that class can be easily reused.

Through the use of inheritance, the derived class can change or add data

and methods as necessary that cause this class to be different from its

root class. No change would have to be made to the root class so there

would be no impact on other classes or programs. As an example, lets

assume that a programmer was contacted to say that management

employees would no longer be paid overtime. No matter how many

hours they work., a manager will always receive pay equal to his or her

weekly salary. In this case none of the existing classes of Employee,

UnionEmp or NonUnionEmp exactly fit the programmers needs. A

94

new derived class must be created for managers. The derived class

Manager can be seen in FIGURE 8.2 below.

FIGURE 8.2 - Class UnionEmp. NonUnionEmp, and Manager
inheritance from class Employee

Unio11Eap
Cit/cP11y
.Prml

Employee

Ea,ployee

/",Union
Print

Jlm,1pr

K,1n,1ger

C,1/t:P,1y
Pr1ilt

class UnionEap inherits methods
E•ployee, lrUmnn ,md Print

from class Employee

Non.UnionEmp

NonUnionE•p
CidcP11y
Pnilt

class Manager inherits methods
£1fP/Oyee. I:tUm"oll ;md .Prillt

fto• cl1.ss Employee

class HonUnion.Eap inhetits methods
£11ployee, b"Umo11 ,md .Pr1ilt

ho• class Employee

95

To reuse existing code and only define the code that makes this function

different, a new class will be written called Manager and it will be

derived from the class Employee as seen in FIGURE 8.3 below.

FIGURE 8.3 - Sub-class of Manager

class Manager : Employee { II Class Manager definition
private: // Accessible only to this classes

double salary; II holds salary for a Manager employee
public: II methods accessible by all classes
/* If 3 string and 2 numeric parameters are passed to this constructor,*/
/* the private field will be set equal to the numeric value passed */
Manager (char LastName[20], char FirstName[lS],

char JobCode[S], long ssn, double sal):
Employee (LastName, FirstName,

JobCode, ssn);
{ salary = sal; }

double Calcpay()
{ totpay = salary; }

void Print()
{
Employee :: Print();
cout << salary << " " << hours << " "<< totpay << "\n";
}

The programmer was able to quickly define a slightly modified

version of the class Employee to meet the new requirement. Those

programmers using the class Employee would not be impacted by this

change. Some programs may need modification so that they can now use

the class Manager where they were previously using the class

NonUnionEmp.

96

' i
1'
;

l
I

SLMMARY

Inheritance is a very common OOP language fcatlll'c that

succcsc,fully prnmotc-.s code reuse. Nearly every object oriented

programmer has used this language feattll'e. C++ has a new language

feattll'e called templates !hat was designed specifically for the purpose of

promoting code reuse. C++ will soon have a positive impact on the code

reuse.

97

CHAlTITiR 9

CONCLUSIONS AND RECOMMENDATIONS

Every one should agree that maintenance costs arc currently very

much oul of hand and that something must be done to try and control

these costs. Most POP departments are trying to reduce the cost of

program maintenance by purchasing products lo use in support of their

POP language rather than considering an alternative programming style. 45

Some programmers will argue that they are able to use a procedural

programming language and still apply lhc concepts of object oriented

programming. 46 ll is possible to simulate some of these concepts but

usually not efficiently or easily. Bjorne Stroustrup addresses the concept

if simulating OOP by using a language style other than object oriented

languages. 47

"There is an important distinction here: A language
suppoils a programming style if it provides facilities that
make it convenient (reasonably easy. safe. and efficient)
to use that style. A language docs not support a
technique if it takes exceptional effort or skill to write
such programs: in that case, the language merely enables
programmers to use the technique. For example, you can
write structured programs in Fortran and type-secure
programs in C, and you can use data abstraction in
Modula-2, but it is unnecessarily hard to do so because
those languages do not support those techniques."

45 Each POP department that I spoke with, has multiple tools to them lo
help in reducing the time spent in program maintenance. These POP
departments include McDonnell Douglas, Tripos. and JWP Controls
46 One department at McDonnell Douglas is trying to incorporate some
of the concepts of OOP into their COBOL programs.
47 Bjarne Stroustrup "What is Object-Oriented Programming'?",
IEEE Software. May 1988.

98

horn a maintenance standpomt, 001' is better than POP since 11

requires fewer function names to remember and coordinate. A POP

language like COBOL. treats its functions as paragraphs or callable sub­

programs and each must have unique names. OOP treats its functions as

methods within class definitions. One program can reference several

different class definitions and each of these class definitions can share the

same method name. The OOP capabilities require less work on the part

of the programmer and they happen as a natural extension of the

language. Therefore, OOP is much better at providing fewer functions to

remember and coordinate since the system does much of that work for

the programmer.

POP languages such as COBOL, have no features or techniques to

help prevent accidental modifications. OOP helps prevent accidental

modifications by encapsulating classes to limit access lo data and

methods. Accidental modifications are not totally eliminated with OOP

but they can be significantly reduced. Therefore, OOP is a better

programming style to prevent accidental modifications.

COBOL allows all procedures within the program to access any of

the data in the program. This makes error detection difficult. In OOP, a

language feature called encapsulation can be applied to a class to help in

error detection. This makes OOP a superior language style in helping the

programmer detect errors.

99

•

The !'OP language of COBOL has no specific language feature lo

help limit the impact of a program change. Encapsulation. the same

001' features that helps detect errors can also help limit the impact of a

change to a program. Therefore, OOP limits the impact of changes to a

program where POP is not able.

POP languages provide the ability to copy source code from a

library into a program. The programmer must reuse code from the entire

copied program and cannot selectively choose the parts needed or

modify the program for only his application. In 001', the programmer

can pick and choose which data and methods to reuse from existing

classes. OOP is therefore a better language style at allowing the

programmer lo create reusable code.

If a COilOL procedural programmer finds code that acts very

similiar to a function that he needs to write, the programmer can (1) add

the code so that it will work for the existing and new application or (2)

copy the existing code and make slight modifications to create new

separate code. If the object oriented programmer finds a class that is

very similar to what is needed, a derived class can be created that

contains only the code that causes the new class to be different from the

existing class. If code reuse only happens when someone remembers

to apply a technique, such as in COBOL, code will only occasionally be

reused. If however, code reuse happens as a result of using a language

feature, such as in OOP, code reuse will happen more naturally in the

design process.

100

In conclusion, definite maintenance and code reuse improvements

can be realized by using OOP rather than u~ing POP. 001' is found to be

the next logical step for programming improvements beyond those

improvements experienced from using structured programming. 48

This thesis supports the hypothesis that OOP is more successful at

reducing maintenance costs and improving code reuse than POP. It is

therefore my recommendation that programming shops currently using

POP languages and experiencing high maintenance and development

costs seriously consider switching lo an OOP language. Some

programming shops have a considerable amount of programs and

personnel trained in a specific language and may not be ready to throw

that investment away and start from scratch with a new language. In

some cases il may be better to use an object oriented version of the

currently used procedural language. This may mean switching from C to

C++, from LISP to FLAVOR or from COBOL lo an object oriented

version of COilOL. Object oriented COilOL is currently being

developed by an international CODASYL task force.49

48Dick Pountain, "Object-Oriented Programming", BYTE. February
1990, page 157.
49Doris Appleby, "COBOL"', RYTT;. October 1991, page 130.

101

SELECTI:D BIBLIOGRAPHY

Appleby, Doris, "COBOL", BYTE. October 1991, page 130.

Arthur, Lowell Jay, Sortware Evo!uljon the Software Maintenance
Challenge. A Wiley-Tnterscience Publication, 1988.

Atwood, 'Jbomas, "Applying the Object Paradigm lo Databases,"
Computer I ,anguage. September 1990. 36.

Bertino, Elisa, and Lorenzo Martino, "Object-oriented database
management systems: concepts and issues," Computer. April 1991. 33.

Biggerstaff, Ted J., Alan J. Perlis. Software Reusability. Volume I
Concepts and Models, ACM Press, New York, 1989.

Biggerstaff, Ted J., Alan J. Perlis. Software Reusability. Volume Tl
Applications and Experience. ACM Press, New York, 1989.

Bobrow, Daniel G., wibe Object of Desire", DATAMATION. May 1,
1989, 37.

~. llorland International. INC., Calil'omia, 1991

Buckler, Grant, "OOP is more than a buzzword". Computer Select. June
20, 1991. 31.

Butler, Martin and Robin Bloor. "Object Orientation," DBMS July 1991,
page 17.

Caldwell, Tom, "Putting Effective Maintenance into Practice," Computing
Canada, October 25, 1990, 44.

Drolos, Diane and Stella Skerlec, "Creating a Rewarding Maintenance
Environment," Computing Canada. October 25, 1990, page 42.

Duncan, Ray, "Power Programming, Redefining the Programming
Paradigm: Tbe Move Toward OOPLS". PC Magazine. November 13,
1990, 526.

Duntemann, Jeffrey, "OOP: a new perspective on code and data", K
:'i!Ye.d, November 14, 1988, 69.

102

l

Gorlen, Keith E., Sanford M. Orlow and Perry S. Plexico, D.ala
Abstraction and Object-Oriented Programming in C++, John Wiley &
Son LIB., 1990.

Horowitz, Ellis, Fundamentab of Programming Languages, Computer
Science Press, 1983.

Hu, David. 00 Environment in C++, MIS Press, Inc., 1990.

Johnston, Stuart J., "001' hailed as way of the future," Info World, May
15, 1989, 17.

Johnston. Stuart .T .. "C++ 3.0 'templates' give greater code reusability,"
InfoWor!d. October 14, 1991.

Lippman, Stanley IL C++ Primer. Addison-Wesley Publishing
Company, Massachusetts, 1991.

Marrs, Keith, "Object-Oriented Database Management Systems: The State
of the Art", McDonnell Douglas Corporation Report B1659, 1989.

Martin, James, "OOP goes beyond the commonsense meaning of
'object'," PC Week. September 11, 1989, 76.

Mullin, Mark, Object Oriented Program Design with Examples in C++,
Addison-Wesley Publishing Company, Massachusetts, 1989.

"Objects at Large", H,gle.as.e._l..Q, September 19, 1990, page 4.

Parikh, Girish. Techniques of Program and System Maintenance. QED
Information Sciences INC., Massachusetts, 1988.

Peterson, Robert, "Object-Oriented Programming". BYTE. February
1990, page 257.

Pountain, Dick, "Object-Oriented Data Base Design". Al Expert. March
1987, 26.

Pratt, Terrence W .. Programming Languages Design and Implementation.
Prentice Hall INC., 1984.

Sharon, William David, "Comparing Object-Oriented and Structured
Methods," presented at Showcase YI. September 25, 1991, St. I .ouis,
MO.

103

Smith, Jerry D .. Reusabijjty & Software Construction C & C++, John
Wiley & Son, 1990.

Snyder, Alan, "Encapsulation and Inheritance in Object-Oriented
Programming Languages," OOPSLA "86 Proceedings. September 1986,
38.

Stroustrup, Bjarne, 'lbe C++ Programming Language. 2nd edition,
Addison Wesley Publishing Company, Massachusetts.

Stroustrup, Bjarne, "What is Object-Oriented Programming?" IEEE,
May 1988.

Tracz, Will. Tutorial: Software Reuse: Emerging Technology. IEEE The
Computer Society of the IEEE, 1988.

Urlocker, Zack, ''Teaching object-oriented programming," Journal of
Object-Oriented Programming, July-August 1989, page 45.

Van Genuchten, Michie!, "Whv is software late?," IEEE Transactions on -Software Engineering. July 1991, page 582.

Verity, John W. and Evan I. Schwartz, "Software Made Simple,"
Business Week. September 30, 1991, page 94.

Weiner, Richard S., and Lewis J. Pinson, An Introduction to Object­
Oriented Programming and C++, Addison-Wesley Publishing Company,
Massachusetts, 1988.

104

	Program Maintenance and Code Reuse: Object Oriented Versus Procedure Oriented Programming
	tmp.1728050487.pdf.lp6Jv

