Lindenwood University

Digital Commons@Lindenwood University

Theses Theses & Dissertations

1992

Program Maintenance and Code Reuse: Object Oriented Versus
Procedure Oriented Programming

Beiramali Moradi

Follow this and additional works at: https://digitalcommons.lindenwood.edu/theses

b Part of the Computer Sciences Commons

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/theses
https://digitalcommons.lindenwood.edu/theses-dissertations
https://digitalcommons.lindenwood.edu/theses?utm_source=digitalcommons.lindenwood.edu%2Ftheses%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lindenwood.edu%2Ftheses%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages

PROGRAM MAINTENANCE AND CODE REUSE

Object Oriented Versus Procedure Oriented Programming

Beiramah Morad:,
B.S. Computer Science

An Abstract Presented 10 the Faculty of the Graduate School
of Lindenwood College in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
Management Information Systems

1992

(0.

777:“"915

ﬂ?7f;
g

ABSTRACT

The purpose of this thesis is to address the problem of the increasing
cost of program maintenance in the data processing world. On average,
programmers today spend 60% of their time in program mainienance and
that figure is increasing at an estimated rate of 1% each year. The cosl is
staggering and almost every business would like to find ways of
reducing maintenance costs. One way (o help reduce maintenance and
development costs 1s lo improve code reusability. Both maintenance

programming and code reusability are the focus of this thesis.

Today's most commoniy used programming language style is

. procedure oricated programming (POP). At nearly every university in

the United States, POP is a required course for both scientific and
business computer related degrees. Most businesses use POP as the
chosen programming language style. Those data processing shops trying
to reduce maintenance costs are usually trying to improve techniques
used in POP rather than researching new language styles such as object

oriented programming (OOP).

OOF requires fewer function pames to remember and coordinate
than POP requires. A POP language like COBOL, treats its functions as
paragraphs or callable sub-programs and each must have a unique name.
OOP allows method names 1o be reused from one class to another and
even within the same class. The system takes care of determining which

1

method should be used. Therefore, OOP is much better at providing

fewer functions to remember and coordinate since Lhe system does much

of that work for the programmer.

POP languages such as COBOL., have no features or techniques to
help prevent accidental modifications. OOP helps prevent them by
epcapsulating classes lo limit access to dala and methods. Accidental
modifications are not totally eliminated with OQP but they can be

significantly reduced which helps reduce maintenance costs.

Error detection is difficult in COBOL since it allows all procedures
within the program to access any of the data in the program. In OOP, a
language feature called encapsulation can be applied to a class to help
* defect errors. Programmers can spend a lot of time Irying to detect errors
in a program. Therefore, OOP is able to reduce maintenance costs by

helping the programmer to quickly find the errors.

The POP fanguage of COBOL has no specific language feature 1o help
with change conirol. Encapsulation, the same OOP {eatures that helps
detect errors can also heip limit the impact of a change 1o a program.
Therefore, OOP is better at reducing the amount of time spent in making

mainicnance changes.

POI” languages allow for code reuse by providing the ability to copy

source code from a library into a program or call an external sub-
program. ['he programmer must reuse code from the entire program and
cannot selectively choose the parts needed or modify the reusable code
for only the new program. InQOP, the programmer can pick and
choose which data and methods to reuse from existing classes. This

ability makes QOP a better language style for writing reusable code.

In OOP, through the use of inheritence, making minor changes to
reusable code is quick and casy. The programmer can creaie a new
class and define only the parls that make the new class different from the
existing class. ‘The QOP programmer takes advantage of the code
 already written without duplicating the code. Code reuse is not possible
in POP without duplicating the code and making the change to the new
copy. POP, unlike QOP, does nol inherently allow for code reuse .

My research into the features and techniques for both POP and OOP
supports the hypothesis that. OOP is better than POP at reducing the time
spent in program maintenance and leads to improvements in code

reusability.

PROGRAM MAINTENANCE AND CODE REUSE
Object Oriented Versus Procedure Oriented Mrogramming

Beiramali Moradi,
B.S. Computer Science

A Culminating Project Presented to the Faculty of the Graduate School
of Lindenwood College in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
Management Information Sysiems

1992

Associate Prolessor Mira Fzvan,
Chairperson and Advisor

Associate Prolessor Jim Factor,
* Acting Chairperson and Advisor

Adjunct Professor Bob Chant,
Reviewer

Associale Professor Oliver L.. Hagan,
Dean of Management Division

* Dr. Jim Factor was the acting Chairperson and Advisor during
Dr. Mira Ezvan's absence in the {'all quarter 1991.

ACKNOWILLIDGMENLS

Dr. Jim Factor’s detailed and thoughtful reviews
of the many drafis of my thesis are much appreciated.

1 would also like to thank Dr. Mira Lzvag and Bob Chant
for their suggestions and review of my thesis.

i

——

TABLE OF CONTENTS

Chapter
1 Iaroductiono, 1
Staement of the problem 1
Stgnificance of the problem !
History of Object Oriented Programming 2
Researchquestionscoooiiii .. 4
Object Oriented Data Base Management Systems 7
2 Whatis Objeet Oniented Programming? 10
Abstractdatatype 11
Fupdamemaldatatype 11
Class. e 1
Method 13
Construclor ... e 13
Private i .15
Protected i 15
Public15
Object ... e 18
Message e e 18
Inherftance il 20
Derivedclasso i, 20
Programming by difference 23
loformation hiding L., 24
Encapsulation 24
Polymorphism 23
Function Overloading 27
Templates, 27
SUBMMAIY ...t e e . 29
3 Mantenance Programming Overview 30
Common reasons for program maintenance30
Programming tools00.32
Techniques and features 34
Choosing a different language 35
Summary e 36

Maintenance Programmung Using POPo 0 L. 37

Sample probleminCobol 39
Fewer funciion names to remember and coordinate 42
Accidental modifications L. 40
Errordetection, 47
Changecontrol L. 48
Summary ..., 31
Maintenance Programming Using OOP............... 52
Sample problemin C++ 53
Fewer function names to remember and coordinate 58
Accidental modifications 58
Lrrordefection i i, 60
Changecontrol 61
SUIMMATY .ottt et ie et cianeas 64
Reusable Code Overview 635
Methodsof codereuse i, 63
Reasons for the moderate success of code reuse €6
Reasons why code reuse reduces maintenance costs 66
Programmung tools il 67
Techniques and featurest 68
Choose a different langugage 69
SUMMATY ...t e 70
Reusable Code Using POP 71
Wriling reusablecode o oo 71
Copycommand 73
Callcommand 78
Comparing copy and call commands 82
Making minor changes to reusablecode 83
Modify theexisingcode 84
Copy existing code to create a new program 86
Summary ... e 87
Reusable Code Using QOP &9
Writing reusablecode 89
Inheritance i 90
Templates 92
Making minor changes to reusablecode 94
Summary e 9%

9 Conclusions and Recommendations 98

Comparisons of POPand OOP 98
ConCIUSION .« - - vt oot e e e e 101
Recommendalion v e et et 101
Bibliography i 102
VIa AUCLOTIS © ..o s e e e et et e e e e 105

CHAPIER 1
INTRODUCTTON

Because of my experience as a maintenance programmer using
procedure oriented programming (POP) and because of my inlerest in
object oriented programming (OOP), I have chosen a comparison of
these two styles of programming. In particular, I am comparing how
their programming techniques and language features help in program
maintenance and code reuse. Today's programmers are spending over
half their time on maintenance problems. This adds up to a significant
cost for all programming shops. Therefore, the hypothesis for this thesis
is that OOP is more successful at reducing maintenance costs and
improving code reuse than POP. My research will include books and
. trade magazines where maintenance and code reuse are discussed. 1 will
be gathering current information from several companies! to find out
about their experiences. My real world experience and academic
{raining will help in this research. To explain some of the points made in
this thesis, I will be using COBOI. and C++ examples. COBOL will help
explain POP techniques and features and C++ will help explain OOFP

techniques and features.

OOP is considered o be a superior language style to POP in many
ways. OOPs breakthrough is that its technology allows the programmer

IThese companies will inciude McDonnell Douglas, AT&T, Tripos
Assoc., Computer Artisans, Home Savings of America, FWP Controls.

.

to build large programs from several smaller prefabricated programs.?

This code reuse requires less programming time as compared to
developing similar large programs using POP. Reusing code is rare in
POP since the language does not inherently allow i. In OOP, by using
smaller simpler programming components, the entire application 1s
usually easier to maintain. Since the code from existing applications can
be easily reused, the programs will contain fewer bugs.3 These ideas
represent an introductory comparison of the two language styles. Futher

comparions can be found throughout this paper.

POP dates back to the 1960's with the development of FORTRAN,
followed by COBOL and ALGOL-60. FORTRAN and AL GOL-60 were

used for scientific programming applications. COBOL was used for

" business programming applicalions. Many major programming

languages were developed from these three early procedural languages.

OOP was first introduced during the fale 1960's with the
development of the programming language SIMULA-67. SIMULA-67
evolved from the procedural programming language of AL.GOL-60 and
contained the new concept of classes and data abstraction. Classes and

data abstraction will be explained in chapter 2.

ZJames Martin, "OOP Holds Promise of Simplifying Computer
Programming”, PC Week, 4 September 1989, page 62.

3John W. Verity and Evan L. Schwartz, "Software Made Simple”,
Business Week, 30 September 1991, page 94.

FIGURE 1.0 - I.ineage of Major Programming [.anguages?

Algol 60

). @on'rimf) (Cubnl)
\

2

Smalitalk-¥

(0-D Lisps }

i

Smula 67

Legend

(7o7)

(oo)

C

Nearly all programmers are familiar with POP since it is the

traditional style of programming. Thus style of programming is normally

a requiremenl when earning a compuler relfated degree in college and is

more widely used in industry. OOP is normally only an elective class if

it is taught at all and is only beginning 10 be used in indusiry. For these

4Keith E. Gorlen, Sanford Orlow and Perry Plexico, Data Abstraction
and Object-Orieated Programming in C++, John Wiley & Soas, 1990,

page 4.

reasons | will begin my thesis by explaining the key terms used in QOP.

For programmers working with procedure oriented languages, there is
more than just syntax 10 learn.’ There are many new features to
understand and it is these features that make Object Oriented languages

stand out from other languages. Some of the [ealures are as follows:

(1) abstract data types

{2) fundamental data lypes
(3) classes

(4) methods

(3) construclor

(6) objects

(7) messages

{(8) inheritance

(9) derived class or sub-class
(10) programming by difference
(11) information hiding

(12) encapsulation

(13) polymorphism

(14) function overioading

(15) templates

I will review in chapter 2, these features and provide an explanation of
them and why they are useful.5 1 will also explain the major differences

between QOOP and POP.

In chapter 3, I will cover an overview of maintenance

programming. Maintenance programming includes any type of work

Slerry D. Smith, Reusability & Software Construction: C and C++, John
Wiley & Sons, Inc., 1990, page xiv.

6These features are explained based on many of the definitions and
examples provided in the book wrilten by Bjarne Stroustrup, The C++

Programming Language, Addison-Wesley Publishing Company, 1991.

done on a program after it 15 used in a production mode rather than in test

mode. This could mean correcling a programming error, enhancing the
code to agree with the users’ latest requirements or improving the logic to
speed up the run time. Maintenance programming issues discussed wiil
include the following : What are the common reasons for changing
production code? Who is making changes to the production code? Why
is it considered boring work? What programming 1ools can help? What

techniques and feaiures can help?

Procedural language maintenance programming issues will be
discussed in chapter 4. Some of the most common programming
languages used today are procedural languages such as COBOL, Pascal,
FORTRAN and C. How can POP reduce the number of unique function
" names? Is there a way (o help prevent accidental modifications? If a
modification resulted in an error, does POP allow the programmer to
casily detect the error’ If a data structure changes, how can it impact all

the programs that use the structure?

Chapter 5 will discuss the mainlenance programming iSsues
related {0 object oriented languages and such topics as: How does
polymorphism help in reducing the number of functions 1o remember and
coordinate? How does encapsulation help in preventing accidental

modifications, error detection and change control?

One way of improving maintenance time is to reuse code. In

Chapter 6, I will present an overview of code reuse. Reusable code

includes everything from storing program logic for modification and

reuse to calling compiled subroutines. Why hasn’t code reuse been very
successful? [low will code reuse help reduce development time and
maintenance costs? What options are availabie to help promote code
reuse? Whalt programming tools are available 10 help in code reuse?

What techniques and language features can help with code reuse?

Chapter 7 explains the issues related directly to code reuse with
procedural languages and how to address (1) writing reusable code and
(2) making minor changes to reusable code. What techniques are
available in POP that dircctly helps in writing reusable code? If a change
must be made to reusable code what techniques can be used to make the

task easier?

Chapter 8 explains the [eatures of code reuse in COP for the
following areas : (1} writing reusable code and (2) making minor
changes to reusable code. Unlike POP languages, OOP languages have
many language specific features to help in code reuse. Some of these
features include inheritance and templates. What are the benefits of these

features?

Chapter 9 will discuss POP and OOP and how they compare. Is
POP or OOP better in reducing the number of function names to
remember and coordinate? Is POP or OOP better at preventing errors
and detecling errors? [s POP or OOP better at controlling the impact of
change 10 a dala structure? Chapter 9 will also summarize and compare

é

OOP and POP 1o help us determine if OOP makes code reuse easier than

POP. If a programmer has to modily reusable code which style makes
the job easier? Finally there will be a recommendation for those
programmung shops using POP and experiencing high maintenance and

development costs.

In support of OOP fanguages, object oriented database management
systems (OODBMS) were developed. Although OOP languages can use
traditional DBMS based on the relational, hierarchical or network data
models, the traditional DBMSs do not support the {ollowing? :

(1} Supporting complex operations on complex objects
(2) Supporting persistent sharable objects.

Many of the same features thal are used in OOP languages have
been applied to OODBMS. These features include :

(1) Classes

(2) Objects

(3) Inheritance
{(4) Encapsulation

A class can be stored in an OODBMS along with the objects
associated with each class.! OODBMS objects can be either persistent or
transient. In persisient objects, complex data siructures can be saved to
disk and can be shared from program to program without the

programmer having 1o code the task of translaling the information in the

7 Keith Marrs, "Object-Oriented Database Management Systems: The
State of the Art”, McDonnell Douglas Corporation Report B1659, 1989.
8 Elisa Bertino and Lorenzo Martino, "Object-Oriented Database
Management Sysiems : Concepts aod Issues”, Computer, April 1991,
page 33.

e e D1 e e et

P A T

object between the data base and the program. Each of the classes are

encapsulated and the data and methods that are inheriled between each of

the classes is stored in the OODBMS.

OODBMS directly support QOP (o help with program
development, maintenance and code reuse. It is estimated that OODBMS
usage can save 20% 1o 30% of development costs above those saved by
using an OOP language.? Experts in the industry predict that costs
associated with the developement and maintenance of a large QOP
application using an QODBMS will cost 1/5 1o 1/10 of the costs
associated with a similar application using fraditional methodologies. 19

Unfortunately very few programmers are actually using OODBMS.1!

A quote from an article printed in the magazine Release 1.0,

supports the opinion that O0ODBMS improves code reuse. 12

Object-onented databases represent the uliimate in
reuse and sharing of code. The complex
interrelationships and interactions of objects and
methods need to be represented only once ... and are
then maintained for all users and applications.
Application programmers avoid redundant effort.

9 & 10 Thomas Atwood, "Applying the Object Paradigm to Databases",
Compuler [Language, September 1990, P. 36 and 41.

11 Three of the programmers that I spoke 10 have used an OODBMS.
These programmers were from McDonnell Douglas, AT&T and
Compuler Artisians. A second object oriented programmer from
McDonnell Douglas, uses relational databases rather than OODBMS.

12 "Objects at Large", Release 1.0, September 19, 1990, P. 4,

This thesis will not address any further the subject of OODBMS.
However, I did want to introduce the idea and mention that QQIDBMS

do support improvements in program maintenance and code reuse.

E
i

R A By

o A AR e 5 e i D4 i i
~O

0 s IR)z e

CHAPIER 2
WHAT IS OBJECT ORIENTED PROGRAMMING?

Today the most commonly used style of programming is procedure
oriented programming (POP) where languages such as COBOL, Pascal,
FORTRAN and C are widely used. Most programmers are experzeaced
with POP, some are fzmuiizr with the concepts of object oriented
programming ((OOP) and even fewer have any experreace with OOP.13
Going from a POP background into the world of OOP can be very
confusing. Most procedure orienled programmers have difficulty in

changing (beir mindset 1o program in an object orienied language.

OOP is a programming style that is very different from POP. OOP

~ was designed with the idea that problem solving should relate directly to

the problem itself. Each object included in the program should be able to
relate 1o an ilem in the problem domain. The communication between
these items 1n the problem domain should relate to the messages (hat can
be sent 1o each object in the program. For a programmng language to be
considered object oriented it must allow for classes, objecis and
inheritance. The most important features of OOP will be explained
below.

13 Every programmer I spoke to koew a POP language, but it was
diificult 1o find programmers that knew OOP. There are usually one or
two departments in very large companies or a specialized small company
that use OOP. Of the companies that I spoke to AT&T, McDonnell

Douglas and Computer Artisians use QOP.

10

2 LT T

P s e A s

The centerpiece of OOP is the abstract data type .14 Data types are
either fundamental data types or abstract data types. Fundamental data

types include integer, real, character, and [loating decimal.!5 [he

language decides whal data values are valid for each of (he fundamentat
data types and decides what operations can be performed on them.
Absiract data types are just like fundamental data types except the
programmer rather than the language decides the data that will be valid
and what type of operations can be performed on that data. For example,
if a program needs to generate a repori based on employee information,
the employee could be defined as an abstract data type including such
operations s a request 10 determine if the employee is a member of a

union or to print the information related 1o an employee.

'The way to define an abstract data type is by defining a class.
FIGURE 2.0 shows the basic format in C++ for defining the class
Employee. The class definition for the abstract data type of Employee
should contain the dala and operations relating directly 1o employee. The
data and operations are directly refated and they cannot be separated. 16
The operation Zmp/loyee creates a new inslance of the class Employee.

The operation /s{/pron determines i an employee is a member of a

14 Richard . Wiener and Lewis J. Pinson, An Introduction to Object-
anmd_ﬂrggmmmmg_mdg_ Addison-Wesley Publishing Company,
1988, page 1

15 Terrence W. Pratl, Programming L.anguages Design and
Implementation, Prentice Hall, [nc., 1984, page 44.

16 Jeffrey Duntemann, "OOP : A New Perspective on Code and Data”,
PC Week, 14 November 1988, page 69.

11

ot it 4l AT

union. The operation Az, prints information related to that employee.

The commands necessary (o execute the operation are found within the
symbols { } immediately following the operation name. ln C++,
comments that are on a line by themself are found between the symbols
{* and */. Comments can also be writlen on the same line as code as long
as the comment is preceeded by the symbols //. The Private and Public
sections of a class will be described later. The basic class Employee

formal is as follows:

FIGURE 2.0- Basic format for defining a class in C++

class Employee

private :
/* Lists dala that can only be accessed by this class */

public :

/* Lists operations that can be accessed by any class or program */
Lmployee |l operation 1 - creates a new employee
{...} /{ commands to perform Zmployee operation
Istnion] operation 2 - determines if employee is in union
{...} // commands to perform Zs{/ason operation
Print // aperation 3 - prints information for to employee
{...} // comuands (o perform e/ operation

A class is a way of describing similar “things”. A class can be
defined by a programmer or taken from a library of classes. These

classes can later be referenced by other classes or direclly by a program.

In the class definition, the programmer must define the type of data
and operations that are valid for the instances of that class. The data for

12

class Employee can be defined in the private section of the class

definition as follows:

long soc_sec_no; /{ Long int. number {or social searity number

Long is a fundamental type of integer. Integers can either be defined as

long or shori depending on how large the greatest possible value will be.
For social security number, the targest number will be 9 digits of all 9's.

For processing on a microcomputer, the number 999999999 exceeds the
largest possible value of 32,767 for short integers, so social security

number must be declared as a long integer.

Another word for an operation within a class is a method. In

L ++ the coastructor method must have the same name as the class. The

constructor method creates a new instance of a class. The constructor
method Zmployee in FIGURE 2.1 requires 4 parameters be passed 10
create a new employee. The first parameter of new_ln will contain a
character string value like "Doe” that will be passed to LastiName and
later set equal 1o last_pame. The secoad parameter of new_fn will
contain a character string value like "Jane" that will be passed to
FirstName and later set equal {o first_name. 1he third parameter of
new_jcd will contain a character string value like "52100" that will be
passed to JobCode and lfater set equal to job_code. The fourth parameter
of new_ssn will contain a long integer value like 111223333 that will be

passed 1o ssn and later set equal to soc_sec_no. The constructor method

13

defmition from FIGURE 2.1 is defined as follows :

Employee (char LastName[20], char FirstName[13],
char JobCode[5], long ssn)
{...}

In FIGURE 2.1, both the method /s{/zror and the data variable
in_union are defined as boolean. A variable is a field assigned a name,
a set of attributes, a reference and a value.!? A boolean is an identifier
that contains eitber true or false. In the method s&/nron, if the employee
is found to belong to a union, the boolean variable mn_umion is set to trye.
To determine the value of in_union outside of the class Employee, the
method fsl/nion must be used. The string function strnemp!® compares
the first 2 characters of two strings. Where # is an integer. The function
returns a value of zero if the two strings are equal. The commands for a

method are between the symbols { and } and follow the method name.

17 Ellis Horowitz, Fundamentals of Programming [anguages, Computer
Science Press, 1983, page 82.

18 Borland C++, Library Reference, Borland International, 1991, page
499,

i4

The method Zsl/nfon from class Employee is defined as follows

/¥ Returns true if the employee is union otherwise returns false */
boolean IsUnion ()

i (strncmp (family, "100".3)) == Q)
10_union = (rue:
else
{
il (stroemp (fanulv, "2007,3)) == 0)
10_union = true;
else
in_union = false;
|5

return in_union;

In FIGURE 2.1, void 1s used wilh the method Azas. Void is found

before a method’s name when the method does not return a value to the

-program. The gout command and the insertion symbols << in the

method Frzar, causes the variables or literals following the command to

be printed as output.

/* Puints 3 strings and 1 long decimal */
/* which are last name, first name and social security number */

void Priar()
{

cout << last_pame << " "<< first_pame << " "
<< SOC__S&C_I]O << n L) jOb_COde << " u;

Data and methods can be defined as private, protected or public. If
data and methods are detined as private. they can be used only by the
defining class. If daia and methods are defined as protected. they can be
used by the defining class and by any sub-class of the defining class. If
data and methods are defined as public, they can be used by the defining

15

A e N DA RO

L e

class and any other class. I'IGURE 2.1 shows in detail three valid

methods in the public part of the class Employee. The first method,
called Zmployee. 1ells whal is necessary to build or construct an
instance of class Employee. This constructor requires the fast name, first
name, job code and social securily number of the employee 1o be passed
as parameters. Rather than using the arrays that were passed as
parameters, (++ requires that a pointer to the array be used. 'Iherefore
pointers were defined for last name, first name and job code. The job
code field defines for the employee, the skill level and type of work. 'Ihe
family tield defines the employee's type of work. The sccond method,
named /snron was described above. The third method, called Az,

will print a line of information related to the employee,
FIGURE 2.7 - Class Employee in C++

#include <iostream.h>

#include <string.h>

7 Beginning of Class Employee definition */
enum boolean {falsc, true}; /i false = 0 true = 1

class Employee { /f Class Employee definition
private: J/ Accessible only to this class
char *last_name; // pointer ta last name
char *first_name: /f pomter te firstname
char *job_code; #/ peinter to job code
char grade[2}; /f 2 character string for the job grade
char family{ 3]; /f 3 character string for job family
long soc_sec_no; /f Long int. value for soctal security numbetr
boolean in_union; /i Boolear that tells if employee is in a union

16

PR TMARI A

© e R i vt

FIGURE 2.1 continued

public: /# methods accessible by alt classes
/* 1f 3 string and I numeric parameter is passed ta the Employee */
M constructor, the private fields will be set equal ta values passed */
Employee (char I astName[20], char FirstName[15},
char JobCode{$S|. long ssn)
{

last_name = [.astName; // Copies name fo private data item

first _pame = FirstName: // Copies name parm to private tem

job_code = JobCode: ¢ Copies job code parm ta private tem

SOC_SeC_No = §30; {/ Copies soc secno parm to private data ttem
/* Job grade is the same as the first 2 pos of job code */

grade[0] = job_code [0]; // Positiort 1 of job cods to pos 1 of grade

grade[1]=job_code [1}; // Position 2 of job code to pos 2 of grade
/* Job family s the same as the last 3 pos of job code *f

famiy]0] = job_code{2]. /7Pos3 of job code to pos I of family

family{1] = job_code[3]; //Pos4ofjob code to pos 2 of fawily

famiy{2] = job_code[4]; // Pos 5 of job code to pos 3 of family

}

/" Returns true if the employee is union otherwise returns false */
boolean IsUnion ()

{if {strncmp {{anuly, “100",3) } == 0)
in_union = {rue;
else
{
f (strnemp (family, "200".3) y==0)
in_union = {rue;
else
in_union = false;
|5

return in_union;

}

* Prints 3 strings and 1 long integer *f
/* which are last name, first name, job code and ssnt *t

void Print {)
{

coul << last_npame << " " << first_pame << * "
<< s0¢_sec_no <<" " <<job_code << 7

} /f Exd of Class Frployee Defiration

17

T L

iy b

gt

Just like you can define a variable 1o be one of the flundamental data

types. you can also define a variable to be of an abstract data tvpe.
When a variable is defined 10 be an abstract data type, the variable is
called an object. An object is another word for an instance of a class. In
the example below from the main program in Figure 2.2, the object
NewEmp is assigned to the class Employee. The command below tells
the name for the constructor method Ampfoyee thal must be executed to

create the new object NewEmp along with the data parameters.

Fmployee NewEmp(new_In, new_{n, new_jcd, new_ssn);

From FIGURE 2.2, the employee's information should only be
printed on the report if the employee is part ol a union. Since the boolean
variable in_union is in the private area of the class Employee, the
program cannot directly access the variable in_union. The program must
use the method /sé/aron, to determine whether 1o print the employee’s
information.

{* only printinformation ot union smployses ¥/
uniontest = NewEmp. Zsl/nson ();

if (uniontest == 1rue)
NewEmp. P/ ()

To cause a method 1o begin executing, a message must be seat lo

the object that contains the method. This message must contain the name

of the method to be executed and any data that must be passed as

18

parameters to the object. There are three types ol messages: 19

(1) Requests for data from within the object.
(2) Requests for the object 1o accept new data.
(3) Requests for object to perform special operations.

In the following example from the main program in FIGURE 2.2,
NewEmp is the object name for a definition of class Employee.

NewEmp. P ()

Print is (he message name that relates direcily to the method P2a/ in the
class Employee. Inthe body of the program, the object name and the
message should be separated by a period. Nothing appears within the
parenthesis if no parameters are passed to the method. At execution time
the message /¥zaf is sent to the object NewZmp. This message causes
the method A/ in the class Employee to bind the formal and actual
paramciers from object Newlimp and print the information from the

object NewEmp.

A simple main program is shown below in FIGURE 2.2 that
references the class Employee in FIGUREF 2.1 and generates a report of

only union empioyees.

19Mark Mullin, Object Opjented Program Design with Examples in C++,
Addison-Wesley, 1989, P. 59.

19

I B s R Ay 8

FIGURI: 2.2 - Man Program

main () { // Start of maio program logic in C++

char new_1n|20], new_[n]15], new_jcd[5];
double new_sl, new_hr;

long new_ssn;

boolean uniontest;

do /f start of loop through employee database

f* Thisis where the command to read the database should go. ¥/
/* The database fields for last name is moved to new_ln. */
/* The database fields for firstname is moved to new_fn. */
/* The database fields for job code is moved to new jcd. *

/* The database fields for social securtty numbers is moved to new_ssn.®/

/* Construct a NewEmp object from the Employee class. *
EmployeeNewlimp(new_ln, new_{n, new_jcd, new_ssn);
/* only printinformation on union employees . *

uniontest = NewEmp. /s&/nion (};
i (uniootest == {rue)
NewEmp. FPaoA);
I
/* Stap looping when the datehase end of file is teached */
while { .. code goes here to loop while employee recs remain ... }

}

T'o define a new class that looks almost exactly like an existing

class, the programmer can reuse the code in the exisling class and use any
of the data and methods available to the new class. ‘1he ability for a new
class 1o reference data and methods from an exisiting class is called
inheritance. When one class inherits data and methods from an existing
class, the oniginal class is called the root class. The new class is called the
derived class or sub-class. IIGURE 2.3 below shows that class

UnionEmp is derived from (he root class Employee.

20

[EACEE

T

S, R e 2

FIGURE 2.3 - Class UnionEmp inheritance [rom class Employee

Empleyee

Fuployees
fllaron
Prin?

UnionEmp
Umenfmp
CatePay
Lrot

class UnionFmp inberits methods
Emplopes, I1man ind Print
from class Employee

FIGURE 2.4 shows the class delinition for the sub-class of UnionEmp

as derived from the root class Employee.

FIGURE 2.4 - Sub-class of UnionEmp

class UnionEmp : Employee { // Class UnienEmp definition

private: /{ Accassible anly to this elass
double salary; {/ holds salary for a union Employee
double hours; /{ holds hours worked for a union employee

double tot_hours; /7 holds total hours

double otpay; / holds the calculated ovettime pay amount
double totpay; // holds the calculated total pay amount
double othours; /' holds the calculated overtime hours
double otrate /! constant overtime rate

21

FIGURE 2.4 continued

public: /{ methods accessible by all classes
* 1f 3 string and 3 numeric patameter is passed to the UnionEmp */
{* constructor, the private fields will he set equal to the values passed */
UnionEmp(char I.astName{20], char FirstName[15],
char jobcode{5), long ssn, double sal, double hrs) :
Employee (LastName, FirstName, JobCode, ssi);

{ otrate=1.5;
salary = sal;
hours = hrs;
tot_hours = hours;

}

void CalcPay()

{

othours = hours - 4):

IF {othours < 0}
othours = 0;

else
hours = 40;

otpay = (othours * otrate * salary);
totpay = (hours * salarv) + otpay;

void Print()
{
Employee :: Print(};
coul << salary <<" " << lot_hours << " " << {olpay << " "

<< otpay << "\n";

} /{ End of class UnionEmp definition

In general, the data and methods that a class inherits are all those

defined in the public and protected areas of the root class. In our

example there was no protected area, so the sub-class UnionEmp inherits

only the public methods Zmployee, Islnron and Fripr from class

Employee. The programmer must mention only the data and methods

that are needed in addition to Lthose Lhat are inheritcd. Since the

programmer of the derived class only has 1o mention the data and

methods that are different from those available in the root class, this

22

iealure is called programuning by difference. Class Uniontimp must

have its own constructor method Ca/ePgy (hat can calculate the weeks

pay for a union empioyee and a method Hrzat to print the detail related
only to union employees. The data [ields in class UnionEmp are needed
only by the derived class and are kept in the privale area of the class
definition. These data fields are used to calculate payroll dollars. A sub-
class was set up [or union employees since it has characteristics that make
this type of employee different from other types of employees. One
characteristic is a unique formula to calculate payroll dollars. Chapter 5
will build on this example and also shows a class for non-union
employees. FIGURE 2.5 illustrates thai class UnionEmp and class

NonUnionEmp are derived from the root class Employee.

FIGURE 2.5 - Class UnionEmp and NonUnionEmp inheritance from
class Employee

Employee

Employes
fillnron

Frimt

UnionrEmp NonUnivaEwp
Unronfup NoniinionEap
LCalcFay CalcPay
Promt Print
class (InionEmp mherits methods class NonllnionEmp inherits methnds
Fmplayes, Islinion and Print EFmployes, Islinion and Prmt
from class Employaa from class Fmployaa

As stated earlier, objects are of a certain type of class. Those

objects contain methods \hat manipulate the data. When a program
passes a message to cause an aclion, the program has no information of
how the action was completed. To the program. the object acts like a
“black box”. All the program knows is that information is passed to the
object and a result happens. This process is called information hiding
since the information within the object is hidden from other objects.
There are 2 main benefits to information hiding as noted below by
Stanley Lippman.20

(1) Change Control - If a data representation in a class changes,
only the members of the class would have to be modified.
User programs would not need to be modified.

(2) Error Detection - If an error occurs in the mantpulation of a
class data member, only the class member functions need to be
evaluated 10 find the source of the problem.

This method of hiding information and only allowing certain types
of actions (i.e. methods) (o be petformed against the data is called
encapsulation. Encapsulation acts like a filter that controls how an

object commuanicates with other objects and programs. From FIGURE

2.2, the command shown below constructs a new object NewEmp.

Employee NewEmp (new_ln, new_fn, new_jcd, new_ssn);

2Stanley Lippman, C++ Primer, 20d Edition, pg 51.

24

Object NewEmp is considered (o be an encapsulaled object since

the data items in the private section ol the object NewEmp can only be
accessed by the methods within object Newlimp. |he methods in the
public arcas of object NewEmp allow Limited access by other classes
and programs. The type of access given to classes and programs outside
of object NewEmp is controlled by object NewEmp. For example, a
program can determine if Lhe employee is a union member by sending the
message /sl/aronm 1o the object NewEmp. The programmer cannot
change the value of the boolean in_union, a variable in the privaie
section of class Employee, since it is accessible only to object NewEmp.
Ihe value of boolean in_union is only accessible through the method
IsUnron. "The value of the otrate (1.5) is not accessible at all by any
class or program outside of class Unionkmp. Otrate is not even
available through a method. Encapsulating specific data items helps to
prevent accidental modifications. I there should never be a reason for
this value to be modilied directly outside the class definition then the data

should be made private and therefore encapsulated from misuse.

As mentioned earlier, both the class Employee and the class
UnionEmp will have a method Har. The same name can be uscd to
execute both the method Arza/ for the class Employee and (he method
Preat for class UnionEmp. The system takes care of deciding which
method to execute based on the type of object the message is sentto. The
system delermines which method to execule at run time. The ability to

resolve which set of procedures to execute is called polymorphism.

25

What follows is a4 command [ound in FIGURE 2.2 that issues the

message /Fzal.

NewEmp. Frrar ():

Since object NewEmp 1s derived from the class Employee, the system
knows 1o execute the method Zrzas found in the class Employee rather
than the method A/ found in the class UnionEmp. Similarty, for an
object NewUntonEmp, the system would use the method Pra found in

the class UntonEmp in the following command.

NewUnionEmp. Az ();

. With the system resolving which method to execute, less work is

required of the programmer. 'This certainly reduces the number of
messages thal a programmer must remember when using different classes

and decreases the chances of errors.

A capability exists that allows multiple functions to have the same
[unction name within oge class. This capability is useful because there
will be fewer functions names to remember and coordinate. ‘Ihe
system takes care of executing the correct function based on the type or
number of data items being passed as parameters. ‘Ihe only requirement
of these same-name-functions is that there be a difference in either the

number of parameiers in each function or that the parameters types be

different. fhis ability of the system (o have several functions with the

same name within one class is called function overloading.

Templates arc a new feature to some object oriented languages.
Templates can be used when multiple [unctions contain the same code
excepl they process differeat types of data and return different tvpes of
data, If a programmer nceded a function to return the mioimum integer
value found in an array of integers, the function would be as found in
FIGURE 2.6 below.

FIGURE 2.6 - Fuaction for {inding tminimum integer in array
o/ oin (orF array, int size) {
£n¢ min_val = array[0);
for (1ot 1x = 1} 1X < size; ++iX)

if (array{ix] < min_val) min_val = array[ix];
return min_val;

}

Now lets assume that the same programmer also needed a function to
return the minimum real value found in an array of real numbers.

FIGURE 2.7 is an example of how that function may look.

FIGURE 2.7 -
Function for finding the minimum double precision number in an array

double min (double* array. int size) {
double min_val = array|0};
for (int ix = 1; iX < size; ++iX)
if (array|ix] < min_val) min_val = array[ix];
return min_val;

}

27

Both [unclions perform the same task of searching through an array of

numbers to find the minimum number. The only difference is that in the
first function the array and returned number are of type integer and in the
second function the array and returned number are of 1ype real. Instead
of coding two separate functions, one function could be written as a
template function with the data type as a variable. Templates require that
a skeleton [or the function be written with an argument passed 1o the
function telling what data type will be processed. FIGURE 2.8 shows a

fuaction template where the argument defining (he data type i1s /F7Z.

FIGURE 2.8 - Function for [inding minimum unknown type in array

template <class 7¥7%F >
7YPE min (I'YPE * arrav, ini size) {
TYPFE min_val = array[0];
for (int ix = 1; ix < size; ++1x)
if (array(ix| < min_val) min_val = array{ix];
refurn oun_val;

}

To process this lempiate against an array of integer aumbers and return
an integer number, the command must be issued as follows where

inl_array is an array filled with integer numbers :
wi inl_result = min(int_array, size):

To process this lemplate against an array of real numbers and return a
real number, the command must be issued as fotlows where

double__array 1s an array [illed wilh real numbers -

double doub_result = min(double _array, size);

T'emplates help in program maintenance since there will be fewer

functions 1o maintain but templates can significantly improve code

reusabuiity,

SUMMARY

‘The major differences between POP and OOP are the capabilities of
data abstraction, encapsulation, inheritance and polymorphism.2! POP
languages like COBOL for example, aliow only the fundamental data
types of characters, integers, binary, and single-precision floating decimal
but do not allow for abstract data types. POP languages also do not
allow encapsulation, inheritance and polymorphism. These features help
to make OOP a more flexible language than POP. Chapters 3, 4, and 5,
~ will support the suggestion that object oriented programs are easier to

mainiain than procedure oriented programs.

MRay Duncan, "Power Programming, Redefining the Programming
Paradigm: The Move Toward QOPLs", PC Magazige, 13 November
1990, page 526.

Zack Urlocker, "Teaching object-oriented programming”, Journal of

Object-Oriented Programming, July-August 1989, page 45.

29

CHAPTER 3
MAINTENANCE PROGRAMMING OVERVIEW

On average programmers today spend 60% ol their time
maintaining programs and this is increasing at approximately 1% each
year.?¢ It is also estimated that 70% of the investment on an application
over its enlire life 1s spent on maintenance.23 Ipvestigation has shown
that one of the major causes of new development projects not meeting
scheduled implementations is because of unplanned maintenance.?4
Maintenance programming includes any change made to a program once
it 18 in & production mode no matter what the reason for the change.

Common reasons for change are :45

(1) Correct a "bug” in the program.
(2) Improve the system as requested by the user.
(3} Improve logic to speed up the application.

Iiven changes thal seem to be minor, can take a long time to complete.
There arc many reasons thatl cause program mainienance to be so (ime
consuming. The cause is usually that a program is confusing and the

person doing the job has trouble determining the best place to make the

22Martin Butler and Robin Bloor, "Object Orientation,” DBMS, July
1991, page 17.

23Diane Drotos and Stella Skerlec, “Creating a Rewarding Maintenance

Environment,” Computing Canada, 25 Octaber 1990, page 42.
IMichiel Van Genuchien, “Why is software late?,” IELLE Transactions on

Software Engineering, July 1991, page 582.

L owell Jay Arthur, Software Evolution : The Soltware Maintenance
Challenge, Wnley-lnter';c:enm Publication, 1988, pages 5-6.

30

change. The programmer must make sure that the change being made to

the program does not cause new problems.

The person making the change is usually not the same person that
wrole the program in the furst place. Usually maintenance programmers
are the newest programmers in a department. The more experienced
programmers are usually working on the development of new
applications. Since changes are being made by inexperienced
programumers, they oficn have trouble [inding the best way to make a
change lo a program. These changes often act like bandage fixes which

can turn an already dilficult to maintain program into a nightmare.

Maintenance 1s demotivating work for most programmers and new
development is considered motivating.28 When designing and
programming an application from scralch, the programmer has a lot of
room for creative expression. When doing program maintenance, the
flow of the application is compleie and the programmer must fit into the
structure already set up. Creatively this 1s not as challenging to most

programimers.

Il 1s very frustraling and can be difficult lo try and delermune how a
change 1o 2 program will affect the rest of the program. Programs are
often structured so that whal could have been a simple change becomes a
major change. The ability to isolate changes to small sections of code can

help reduce maintenance time. [n some languages this could mean using

31

= TR HNER nD Tr ¢

e i D

AN IR PR 2 o

a programming iechnique and in other languages this is done by built in

language features.

Because of the amount of time speat in program mainienance, you
can se¢ why companics are trying to improve the process. There are
several options available. Some of the options to help reduce program

maintenance Lime are :26

(1) Use programaung loofs 1o improve testing and making the
changes.

(2) Make sure programmers use the /Jznguage lechniques and
leatures avaable for the chosen language.

(3) Choosay a dillereat language or styte of language to find one
better able to improve maintenance programming.

Lach of these will be considered in the following 3 sections :
(1) Programming Tools

(2) Techmques and Features
(3) Choosing a Different I.anguage

PROGRAMMING TOOLS

Programming 1ools are available that can help reduce the time spent

i program maintenance. For each maintenance task, a tool may be

BGirigh Parikh, Techniques of Program and System Maintenance, QED

Information Sciences, Inc., page 278.

32

available that can help reduce the time spent doing that task. "Lhree of

those tools are as follows :

(a) Debugging Tools
(b) Conversion Tools
(c) Cross Reference Listings

Localing a bug in a program takes a ot of time. Debugging tools??
are available for many languages to help find program bugs. These
debuggers let the programmer siep through the program line-by-line to
see just how a program reacts to the data it processes. Variables can be
displayed to show when the value changes. Being able to see whai
functions are executed and what the value of certain fields are, helps the

programmer identifly problem areas quickly which reduces testing.

- Debuggers are available for both POP and OOP.

Trying 1o read unsiructured procedural code can be very time
consuming. Conversion tools exist that allow code 1o be read into a
conversion program that changes it into structured code. Structured code
is an accepled style of programming that helps makes POP code easier to

understand and therefore easier to maintain.

Trying to find where variables and procedures are defined and used
in a program can be a difficult and lime consuming task. Fortunately,

many POP compilers (e.g. COBOI., FORTRAN, Pascal, efc.) offer cross

t7Programmers from every company | spoke with used a debugging Lool
regardless of whether the programmer was using OOP or POP.,

33

A e e AN

relerence listings that shows where a variable or procedure is defined

and used in a program. These cross reference listings are very helpful
when trying to understand the impact that changing a module will have
on the rest of the program. The cross reference listing can act as
documentation and serves as an umportant tool in the maintenance

process,

TECHNIQUES AND FIEATURES

Applying programming techniques 10 a language can improve the
mainlenance process. For example one could make the program self
documenting by adding comments or using structured programming
techniques.?8 Unfortunately techniques must be implemented by the

programmer. Nothing forces the programmer to use a technique. Many

~ techniques are meant to help the maintenance programmer at a later date.

The development programmer is usually not concerned about the
maintenance programmer. Everything in the program makes perfectly
good sense to the development programmer so spending the time to
apply some of the techniques to help the maintenance programmer seems

ltke wasted time and oflen these techniques do aot get applied.

Using language features are more successful at reducing

mainienance costs then using programming techniques. An example of a

28A programmer from Tripos Associates presented documented
programming standards that stressed the use of internal source code
documentation.

34

lunguage leature that helps reduce maintenance time is encapsulation i

OOP. Encapsulation reduces the time it {akes 1o lind crrors and makes o
easy to determme the impact of a change to a class. Polymorphism is an
OOP language feature that reduces the number of function names to

remember and coordinate. How Encapsulation and Polymorphism help

the maintenance task is explained in detail in chapter 5.

All Janguages have some basic programming techniques and
[eatures that can be used to help reduce maintenance time. PQP

languages have fewer such language features than OOP languages.

CHOOSING A DIFFERENT LANGUAGE

If the language chosen by a programming shop is not performing

- well in the area of maintenance, a review must be done to determine if the
selected language is being used to its best or if another language should
be chosen. If the program maintenance does not improve by using the
tools, techniques and features for a chosen language, then the
programmer should consider choosing a different language. There may
be an improvement by going from one procedural language to another
but there may be an even greater improvement by going from a

procedural language to an object oriented language.

Using a language that has features to help a programmer code so
that program maintenance is naturally improved is betler than using a
language where il is up to the programmer to remember to apply special

techniques to the code.

33

SUMMARY

Since POP and OOP have simiar programming tools available,
these tools will pot be discussed in the following chapters. What I will
concentrate on in chapters 4 and 5 are he language techniques and
features availablc to help reduce program maintenance time in four
specific problem areas found in FIGURE 3.0.

FIGURE 3.0

1. Fewer function names o remember and coordinate.
2. Accideantal modifications.

3. Crror delechon.

4. Change control.

36

CIIAT'TER 4

MAINTENANCE PROGRAMMING USING POP

There are tools, techniques and language features that can be applied
to procedure oriented programming (POP) languages to help improve
program maintenance. This chapter deals with POP, and how together
the language style and the programmer are able to address the four

program mainlenance areas in FIGURE 3.0,

To address these areas, the following example will be refcrenced
throughout this chapter. Assume that a programmer was asked to wrile a
program lo calculate the weckly pay for the employees of Company A.
Company A uses the POP language COBOL. COBOL was chosen as the
language for the following example because the features and problems it
ilas in the area of maintenance are characteristic of other POP languages

and COBOL is the most widely used POP language in business.

EXAMPLE
PROBLEM DISCUSSION

Company A has both union and non-union employees. A
program must be written that takes each employee's salary and
current week's hours (o calculate the week's pay and print a
detailed report.

Union employee description:

o Paid by the hour and receive 1.5 times their hourly rate for
each hour of overtime. .

o Salary is stored as an hourly amount.

0 Reporl should contain the following information : (1) name
(2) SSN (3) job code (4) salary (S) hours worked (6) total pay
(7) overtime pay. Sample output follows :

37

NAME 33N JOBCODE SALARY HRS TOTPAY UTPAY
Smith Mary 222334444 52100 51006 44 346000 $60.00

Nog-union employee description:

o Paid a weekly salary and are paid the hourly equivalent
of their weekly salary for each hour of overtime.

0 Salary 1s stored as a weekly amount.

o Report should contain the following information for non-union
employees (1) name (2) SSN (3) job code (4) salary (5) hours
worked (6) tolal pay. Sample output follows :

NAME 35N JOBCODE SALARY HRS TOTPAY
Doe John 111223333 58444 $450.00 40 §450.00
IMPLEMENTATION

Positions 1-2 of the job code field indicate the skill level or grade
of the employee. Positions 3-5 of the job code indicate the family
of work the employee belongs to. If the job family is equal to
union number 100 or union number 200, the employee is
considered a union employee.

FIGURE 4.0 shows pieces of the COBOL program that wouid

perform the necessary calculations and print the report. To reduce the

lenglh of the program onty the important lines of code will be included in

the program. An asterisk before a line of code means that line is a

comment.

38

R R RTNE R R

ms»wmm v e ey o b e v,

11GURE 4.0 - Lployee Payroll Report in COBOL

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.

FD REPORT-FILE

DATA RECORD IS REPORT-RECORD.

01 REPORT-RECORD PIC K1),
* ‘lhe dala area is in the working-storage section.
WORKING-STORAGE SECTION.

01 100-EMPLOYEE-RECORD.

05 10C-LAST-NAME PIC X{20).
05 100-FIRST-NAME PICX(15).
05 160-DEPARTMENT PIC X{04).
05 100-JOB-COLE.
10 100-GRADE PIC X{02)
10 106-FAMILY PIC X(3).
88 100-88-UNION-EMPLOYEE VALUE 108",
200",
05 1060-SSN PIC 9{09).
05 100-SALARY PIC9(6)V99.
05 100-HOURS PIC 9(3)v95.
01 200-HOLD-AREAS.
05 200-UNION-OTRATE PIC 9(3)V99 YALUE 15
05 Z00-HOLD-HOIURS PIC 3{3jv99 VALUE 0.
05 200-OTHOURS PIC 3(3)vIs VALUEQ.
65 208-OTEAY PIC 9699 VALUE.
05 200-TOTPAY PIC 9{6)V39 VALUE(.
05 200-HRLY-RATE PIC {3)V99 VALUE 0.
05 Z00-END-OF-FILE P1C¥(03) VALUE “NO "
01 300-CONSTANT-AREA
05 300-FULLTIME-HOURS PIC9103) VALUE 40.

39

AN R - A R s b et

B TR W

e T TSI . 55 LA o

FIGURE 4.0 continuved

01 400-PRINT-DETAIL-LINE.

85 FILLER PIC X{03).
05 400-LAST-NAME PIC %20}

85 FILLER PIC X(03).

05 400-FIRST-NAME PIC X(15).

05 FILLER PIC X(03).

05 400-SSN PIC 3{9).

05 FILLER PIC X(02).

05 400-JOB-CODE PIC X(05).

95 FILLER PIC X{02).

D5 400-SALARY PIC $777,729.99.
05 FILLER PIC 3(03).

05 400-HOURS PICZZ9.95.

05 FILLER PIC X(03).

05 400-TOTPAY PIC $777,779 93
05 FILLER PICX(03).

05 400-OTPAY PIC $772,772.7Z.
95 FILLER PICX(03).

* The main program and paragraphs are found in the procedure division.
PROCEDURE DIYISION.
B000-MAINLINE.
PERFORM [0G0-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS
UNTIL 200-END-OF-FILE = "YES".
PERFORM 3006-TERMINATION.

1060-INTTIALIZATION.
* OPEN FILES, DO INITIAL READ

2000-PROCESS-EMPLOYEE-RECS.
PERFORM Z100-CALCPAY.
PERFORM 2200-PRINT-REPORT.
PERFORM 8000-READ-EMPLOYEE-REC.

Z100-CALCPAY.
IF 100-88-UNION-EMPLOYEE
PERFORM 2116-CALCPAY-UNION
ELSE
PERFORM 2126-CALCPAY-NONUNION.

FIGURL 4.0 coatinued

Z1-CALCPAY-UNION,
MOVE 100-HOURS TO 200-HOLD-HOURS.
COMPUTE 200-OTHOURS =
Z00-HOLD-HOURS - 300-FULLTIME-HOURS
IF 200-OTHOURS < 0
MOVE ZERO TO 200-OTHOURS
ELSE
MOVE 300-FULLTIME-HOURS TO 20¢-HOLD-HOURS.
COMPUTE 208-OTPAY -
{200-OTHOURS * 200-UNJON-OTRATE * 100-SALARY).
COMPIUITE 200-TOTPAY =
(200-HOLD-HOURS * 1M-SALARY) « 200-OTPAY.

2120-CALCPAY-NONUNION.
MOVE 190-HOURS TO 200-HOLD-HOURS.
COMPUTE 200-OTHOURS =
200-HOLD-HOURS - 300-FULLTIME-HOURS,
COMPUTE 200-HRLY-RATE =
100-SALARY / 300-FULLTIME-HOURS,
IF 200-0THOURS < [
MOVE ZERO TO 206-OTHOURS
ELSE
MOVE 300-FULLTIME-HOURS TO 200-HOLD-HOURS.
COMPUTE 200-TOTPAY =
(100-SALARY) +
(200-OTHOURS * 200-HRLY-RATE).

2200-PRINT-REPORT.
IF 100-88-UNION-EMPLOYEE
PERFORM 2210-PRINT-UNION
EL3E
PERFORM 2220-PRINT-NONUNION

2210-PRINT-IJNION.

MOVE 180-LAST-NAME TO 400-LAST-NAME.
MOVE 100-FIRST-NAME TO 400-FIRST-NAME.
MOVE 100-35N TO A00-5SN

MOVE 10-F]JOB-CODE TO 400-JOB-CODE.
MOVE 100-SALARY TO 490-SALARY.
MOVE 200-HOLD-HOURS TO 490-HOURS.
MOVE 200-TOTPAY TO 400-TOTPAY.
MOVE 200-OTPAY TOQ 400-OTPAY.

WRITE REPORT-RECORD FROM 400-PRINT-DETAIL-LINE
AFTER ADVANCING 2 LINES.

41

FIGURE 4.0 continued

2220-PRINT-NCNUNION.

MOVE 106-LAST-NAME TO 400-LAST-NAME.
MOVE 100-FIRST-NAME TO 400-FIRST-NAME.
MOVE 100-S8N TO 400-35N
MOVE 100-JOB-CODE TO 400-JOB-CODE.
MOVE 100-SALARY TO 400-SALARY.
MOVE 200-HOLD-HOURS TGO 400-HOURS.
MOVE 200-TCTPAY TO 480-TCTPAY.
MOVE ZEROES TO 480-OTPAY.
WRITE REPCRT-RECORD FROM 400-PRINT-DETAIL-LINE
AFTER ADVANCING 2 LINES.
3000-TERMINATION

* CLOSE FILES AND STOP RUN.

8000-READ-EMPLOYEE-REC.
* READ RECCRD FROM FILE
* AT THE END OF THE FILE SET 200-END-OF-FILE TQ "YEY"

FEWER FUNCTION NAMES TO REMEMBER AND COORDINATE

Nearly all programming shops have scveral different types of
lunctions. Most of these funclions are very dilferent {rom one another.
But in many other cases, the functions are very similar with only slight
variations of the data lvpes or operations. There are also occasions
where a function will act almost like another function but coded with a
different programming style. Sometimes these functions will be in their
own separate library f{ile and other times the functions will be within the
source code for the entire program. The resuli of oo many functions is
an overcrowded and difficult fo maintain hibrary. H is also difficult for a
programmer 10 lake advantage of using any of the common functions
because of a large number to choose from and because the names may

not always clearly relate to what the function is actually doing,.

42

When designing the structure of the COBOI. program most of

loday's programmers would apply a struciured programming technique
called cohesion. Cohesion means that all paragraphs or sub-programs
should perform only one task. With cohesion, the paragraph or sub-
program will be less complicated and casier 1o follow since the
programmer musl concentrate on only one task. This can help during the
maintenance process. Naming these paragraphs or sub-programs ts also
very important so that the maintenance programmer can easily identify
what is being done. Since there are two types of employees in our
example, there are two separate ways to calculate therr weekly pay
amount and two separate print Lines. We would want to code each of
these similar tasks as separate paragraphs. Since these paragraphs will
perform very similar functions except that one is done for union and one

1s done for non-union, their paragraph names were made very similar.

Each of the paragraphs in FIGURE 4.0 performs only one task.
Even though the calculation of a week's pay seems to be one task, the
task is done differently depending on whether the employee 1s union or
non-union. In this panicular example there are only {wo print paragraphs
and two calculate pay paragraphs so this is not really too confusing.
Imagine if there were 10 different types of employees with separate
caleulahions and print detail formats. This would eventually leave the
programmer with too many similar paragraphs to keep track of and
maintain. Other programs that may need o perform payroll calculations

would also have 1o repeat the same paragraphs.

If a function such as calculate payrolt wilt be used by many different

programs, the paragraphs may be removed {rom the code and treated as
callable sub-programs. Even if the functions were treated as sub-
programs, there would probably sull be a separate sub-program for each
type of employee. In our exampte below, 100-SALARY and
100-HOURS pass the required information mto the sub-program and the
results are passed in the parameters 200-O{PAY and 200-TOTPAY. The
paramelers to pass information into and out of the sub-program follow
the USING statement. COBOL will only allow 8 position unique names
for the sub-programs, so to calculate pay for union employees the name
CALCUNON was chosen. To calculate pay for non-union employees
the name CALCNONU was chosen. 'The calculate pay paragraph that
follows would replace the same paragraph name in FIGURE 4.0.
Paragraphs 2110 would be moved to the sub-program CALCUNON and
lhe paragraph 2120 would be moved 1o he sub-program CALCNONU.

2100-CALCPAY.
[F 100-88-UNION-EMPLOYEE
CALL"CALCUNON" USING 100-SALARY
100-HOURS
200-OTPAY
200-TOTPAY

ELSE
CALL"CALCNONU" USING 100-SALARY
100-HOURS
200-OTPAY
208-TOTPAY.

By looking at the names of the sub-programs, it is not obvious what will

happen. The name CAL.CUNON and CALCNONTU will not mean much

A e s

lo a maintenance programmer. 1he developmenl programmer must

remember Lo put good paragraph names or add good comments to
explain just whal is going on in the sub-programs. Like the problem with
paragraphs, when there are 10 different types of employces there wil
need to be 10 different sub-programs. This can be too much for the

maintenance programmer (o iry to Keep straight.

Another technique exists to use a sub-program but code it as one
large sub-program called CALCPAY. An addilional parameter would
have to be passed to the program identif ving what type of employee 15
being processed. Paragraph 2100 as ¢ appears in FIGURE 4.0 would be
replaced with the following paragraph.

2100-CALCPAY.

CALL "CALCPAY" USING 100-SALARY
180-HOURS
100-FAMILY
200-UNION-OTRATE
200-OTPAY
00-TOTPAY.

Paragraph 2100, 2110 and 2120 as they appear in FIGURE 4.0 would
move to the sub-program CALLCPAY. By using one single sub-program,
the main program is a Liltle less confusing since il does not have a
separate paragraph for each type of calculation. Only one function name
must be remembered to calculate the pay. The only drawback is that now
the sub-program of CAL.CPAY will contain several paragraphs that

perform similar caicuations but have slightly different names.

45

‘The use of paragraphs or callable sub-programs are language

featurcs, but using them cobesively 15 a programming technique. The
programmer must remember to have only one task for cach paragraph,
choose a meaningful name and add sulficient comments so the
maintenance programmers job is made easier. With POP you have a lot

of function names to remember and coordinate.
ACCIDENTAL MODIFICATIONS

A programmer must be very careful when making modifications to a
program. (n POP # is very easy to accidentally modify data variables

that should not have been modified.

In COBOL., every lield in working storage is accessible 1o every
line in the program. This would mean thal a programmer may move data
to the wrong field and no warning would be given at compile time.
These errors are usually found during tesling or once the program is
running in production.

L.ets assume the [ollowing move statement was accidentally put in

paragraph 2120 of FIGURT: 4.0.
MOVE: 200-0TPAY TO 200-UNION-OTRATE

The program would compile with no errors since both fields 200~

OTPAY and 200-UNION-OTRATE exist in working slorage. The

problem is that 200-UNION-OTRA I'E: should not be changed. In

COBOL there is no way 1o prevent a number from being moved to 200-

UNION-OTRATE.

Some POP languages like COBOL. have no language features or

techniques that can be used to prevent accidental modifications.

ERRORDETECTION

If a program is not working properly, the program is said (o have a
"bug”. It is then the job of the maintenance programmer 1o correct the
bug. This task can somelimes be very difficult especially when many
differcnt functions have access to the same variable data fields. In our
COBOL exampic of FIGURE 4.0, lets assume that a maintenance
programmer was 1old, the union employees overtime pay is not being
calculated correctly. "The input file containing the employee's houss.
salary and job code was found 1o be accurate so the problem must exist
in the program. The programmer would probably first look at paragraph
2110 and see if the formula is cosrect. When the formula is reviewed, it
1s [ound (o contain several working storage fields. Fach of these fields
would have to be evaluated 1o determine if they were being improperly
sel. Since every field in working storage is accessible Lo every line in the
program, there may be a lot of work ahead of the programmer to
determine what might have gone wrong with the ficlds that make up the

formula. If for example, the program in FIGURE 4.0 was accidently

47

modilied so that the following move statement was put in paragraph

2120, 1t might take a while to find this bug.

MOVE 200-OTPAY TO 200-UNION-OITRATE.

The working storage field for 200-UNION-OTRATE is supposed to be a
constant value of 1.5 winch is correct, But the error of adding this move
causes the constant 200-UNION-OTRATE to change every time
paragraph 2120 1s executed. Since the union employees pay is wcorrect,
the maintenance programmer would probably not even look at the non-

union paragraph for quite a while.

Most POP lunguages such as COBOL rely on 1ools such as
debuggers 1o detect this type of problem. In programming shops where
debuggers do not exist, the programmer must step through the code line
by line to look for logic flaws. Stepping through a program line by line
can be very time consuming and therefore costly during the maintesance

process.

CHANGE CONTROL

When a maintenance programmer is making 4 change to part of a
program, it can be difficult to determme what impact that change will
have on the entire program. As identified early in this chapter, the
program in FIGURE 4.0 was developed using the structured

programming technique of cobesion. ‘['he example bug found in the

M o AP A S ey, T aa E

Lrror Detection section above can be corrected fairly easily once it is

found. Since this bug is in a cohesively designed program, we can safely
say that setting the union overtime rate ficld in the non-union calculate
pay paragraph does nol make sense. In fact having this bug in the
program aciually made paragraph 2120 be non-cohesive since the
paragraph did more than just calculate non-union ¢mployee's weekly
pay. By removing the statement in error, paragraph 2120 returns (o 2
cohesive state and in this case, nothing else would be impacted by the
change. When a program was written using cobesion, and the
programmer musl later make a change, then it is fairly easy to determine

where the change should be made.

Some changes that are requested can have a major impact regardless
of whether programs were developed with cohesive techniques. The
President of CASE Associates Incorporated presented a paper at
Showcase VI stating that one of the disadvantages of Structured Metbods
is that even small programmiag changes can lead to high maintenance
costs.2? Assume thal management plans to restructure the employee's job
code. It will no longer be possible to look at positions 3 through 5 of the
job code to determine if the employee is a union employee. Management
has proposed that the positions 1 through 2 of job code still show the

employee’s grade level but now positions 3 through 4 will be used to tell

2William David Sharon, President of CASE Associates, Tnc.,
"Comparing Object-Oriented and Structured Methods™, Showcase VI,
September 25, 1991, St. Louis, MO.

49

it which field the employee is working and position 5 will be used to

match against a table to determine the employee famiy. For example a

person with a new job code of "521°G1" would be wdenlified as foliows :
positions 1-2; value of 52 ; means grade level of 52
positions 3-4 ; value of PG ; means programming field
position 5 ; value of 1 is matched to a table (o find that the
emplovee 1s m union 100

1he impact ol this change on the program in FIGURE 4.0 15
moderate. !.ogic must be added to use posilion 5 of the job code and

read a table 1o find out if ihe employee is union.

JOB CODE FIELD FAMILY TABLE

35 100-1OB-CODE 01 FAMILY-TABLE.
10 100 GRADE PIC X(02). 10 FAMILY KLY PIC X(1).
10 100-FTEI D PIC X(02). 10 FAMILY-CODE PIC X(3).

10 100 FAMILY PIC X(01).

The IF statements in paragraphs 2100 and 2200 will have o be modified
10 test the result of the table search.

2100-CALCPAY.
SEARCH FAMILY-TABLE
WHEN FAMILY-KEY = 100-FAMILY
THEN MOVE FAMILY-CODE TGO 200-HOLD-FAMILY.

IF 280-HOLD-FAMILY = "100" QR 200-HOLD-FAMILY = "208"
PERFORM 2110-CALCFAY-UNION

ELSE
PERFORM 2120-CALCPAY-NONUNION.

But even more significant is that all the programs in the company that use

the family identifier within the jobcode will have 1o be modified with the
same changes that applied to the sample program in FIGURE 4.0. This

could take a significant amount of time. POP languages such as COBOL

e AR AT

do nol have programming language [ealures or iechniques (hat eliminate

this type ol maintenance problem.

SUMMARY

Lo summary the procedure orieated fanguages do not have inherent
abilities to (1) reduce confusion of having many similar functions, (2)
preveat accidental modifications, (3) help detect errors quickly or (4)
limit the impac! of changes to a system. "there is no way to prevent the
accidental modification of data in POP languages such as COBOL. I the
development programmer used a structured programming technique of
cohesion, error deteclion and code changes will be a little easier for the
maintenance programmer. 1he only way to reduce the confusion of
having many similar functions is (o have good documentation 10 easily
find and understand the purpose of each function. Relying on the
programmer o understand and remember to apply these techniques is not
a perfect solution to the problem but techriques do help in program
maintenance if consistently applied. But the reality is that programmers
arc often under a lol of ttme pressure and often leave out the
documentation or document poorly30 and don't always follow the rules

of cohesion and good programming techniques.

30Programmers from McDonnell Douglas, AT& 1, and llome Savings of
America said that they felt pressured to meet programming deadlines and
oflen neglected to update or write good documentation.

51

;Y

e)

CHAPTERS
MAINTENANCE PROGRAMMING USING OOP

One of the reasons for the development of object oriented languages
was to improve program maintenance.3! The result was a language style
with features specifically designed to help the four program maintenance

areas listed m FIGURL: 3.0,

In chapter 4, Company A requested that a program be written 10
caleulate the weeks pay and print a formatted report of the pay detail
information. Chapter 4 showed that program in the POP language of
COBOL.. T'hat same program will now be shown using the OQP
lunguage of C++. To reduce the length of the program, only the
important lines of code will be included. Comments can be found
between the symbols /* and */ or following the symbol // when the

comment 1$ on the same line as source code.

31Dick Pountain, "Object-Orienled Programming”’, BY1E, February
1990, page 257.

32

FIGURE 5.0 - Lmployee Payroll Report in C++

#include <iostream.h>

#include <string.h>

/* Beginning of Class Employee deftition ¥/

enum boolean {false, true}; /f false = 1 ;tue = |

class Employee { // Class Employee definition
private: /{ Accessible only to this class

char *last_name; // pointer o last name

char *first_name; // pointer to firstname

char *job_code; // pomter to job code

char grade{2]; // 2 character string for the job grade

;

i char family[3}; /3 character string for job family

E long soc_sec_no: // Long int. value for social security number
H boolean in_union;// Boolean that tells if employee is in a union
4 public: I/ wethods accessible by all classes

] /* 1f 3 string and 1 numeric parameter is passed to the Employee */

/* constructor, the private fields wll be set equat to values passed ¥/
Employee (char I.astName{20], char FirstNamef 15},
char JobCodef5), long ssn)
{

last_name = LastName; // Copies name parm to private data item
first_name = FirstName: // Copies name parm fo private item
job_code = TobCode; /f Copiesjob code parm to private item
SOC_SEC_NO = SSIL; /! Copies soc secno parm to private data iter
{* Job grade is the same as the first 2 pos of job cade */

grade[0] = job_code [(Q]; // Position 1 of job code to pos 1 of grade
grade[1] = job_code [1]; // Position 2 of job code to pos 2 of grade
/® Job family is the same as the last 3 pos of jub code */

family|0} = job_code{2]; // Pos 3 of job code ta pos 1 of family
family[1] = job_code{[3]; // Pos 4 of job code to pos Z of family
family[2] = job_code{4]: // Pos 5 of job code o pos 3 of fawmily

533

FIGURI 5.0 contnued

/* Returns true if the cplayen (s amion otherwise returns false ¥/
boolean IsUnion ()

{
if (strncmp (family,” 100", 3)==0)
in_union = true;
else
{ if (strocmp (family, 200",3)==0)
iB_union = trye;
else

}:

refurn io_union:

}

/¥ Prnts 3 sirings and 1 long mteger ¥/

¥ which are last rame, fivstname, job code and ssn ¥/

void Prind ()

{ cout << last_pame << " " << first_pame << " " << soc_sec_f10
<< '

}

"<<job_code << "7
& // End of Class Employee Definition

m_umon = false:

class UnionEmp : Employee { // Class UnionEnp definition
privale: /I Accessible only to this class
double salary: // holds salary for a union Employee
double hours; // holds hours worked for a unian employee
double tot_hours; // holds total hours
double olpay; // holds the calculated overtime pay amount
double tolpay; // holds the calculated total pay amount
double othours; // tolds the calculated overtime hours
double otrate; // holds overtime rate
public: {{ methods accessible by all classes
/* 1 3 string and 3 numeric parameter is passed to the UnionEmp */
* constructor, the private fialds will be set equal to the values passed */
UnionEmp(char LasiName([20], char FirstName{15],
char JobCode[S5], long ssn, double sal, double hrs) :
Employee (LastName, FirstName. JobCode, ssn)
{ ofrate =1.5;
salary = sal;
hours = hrs;
lot_hours = hours;

}

54

FIGURT 5.0 continued

void CalcPay()
{ othours = hours - 40;
if {othours <0)
othours = 0;
clse
hours = 40;
otpay = (othours * otrate * salary);
lolpay = (hours * salary) + otpay:

void Prind()

Employee :: Prinl(};
cout << salary << " " << lot_hours << " " << totpay << " "
<< olpay << "\n":

b /f End of class UnionEmp definition
class NonUntonEmp : Employee { // NonUnionEmp definition
private: /! Accessible only to this class
double salary: // holds salary for a non-umion employee
double hours; // bolds hours worked for a non-union employee
double tot_hours;// holds total hours
double otpay; // holds the caloulated gvertime pay amsunt

double totpay; // holds the calculated total pay amount
double othours; #/ holds the caloulated overtime hours
double hrly_salary: // holds hourly salary
public: // methods accassible by all classes
/% 1f 3 string and 3 numeric parameter i passed to this constructor, ¥/
/* the private fields will be set equal to the values passed */
NonUnionEmp (char [.astName{20}, char I'irstNamef 15],
char JobCode[3], long ssa, double sal, double hrs) :
Employee (LastName, FirstName, JobCode, ssn)
{ salary =sal
hours = hrs;

hrly_salary = hours / 40;

FIGURE 5.0 continued

void CalcPay ()
{othours = hours - 40;
if (othours < 0)
othours = 0;
else
hours = 40;
otpay = (othours * hrly_salary);
totpay = (hours * hrly_salary) + otpay:

voud Print ()

Employee::Priat ();
cout << salary << " " <<{of_hours << " " << lotpay << "\n";

}

I /{ End of class NonUnionEmp definition

/* Start of main program logic */
main ()

char new_In[20], new_fn[15], new_jed(5];
double new_sl, new_hr:

long new_ssn;

boolean unioniest;

FIGURE 5.0 conlinued

do { // start of loop through employee database

/* Construct a NewEmp object from the Employee class. ¥/
Employee NewEmp(new_ln, new_{n, new_jed, pew_ssn);

/* only printinformation on union employees */

uniontest = NewEmp. /s//ason();

if (uniontest == (rue)

{
Unionkmp NewUnionEmp (new_In, new_fn, new_jed,
new_ssn, new_sl, new_hr);

NewUnionEmp.CalcPay ();
NewUnionEmp. Prinr);

else

{
NonUnionEmp NewNonUnionEmp (new_in, new_fn,
new_jcd, new_ssn, new_sl, new_hr);
NewNonUnionEmp. CalePay ():
NewNonUnionEmp. At ();
}

while . .. ; // employee records remain

}

In this example program, (ke root class is named Employee and
denived [rom the root class Employee are the two sub-classes of
UnionEmp and NonUnionEmp. All of the methods (eg, Lmployee,
CalcFay, and FPraof) in the public section of the class Employee are
inherited by both class UnionEmp and class NonUnionEmp.

37

S ety R)

What follows are the [our program maintenance areas listed in Figure 3.0.

FEWER FUNCTION NAMES TO REMEMBER AND COORDINATE

Most OOP lapguages allow methods within different classes to have
the same function name. In the example program in FIGURE 5.0, all
three classes have a method Azs. Both the class UnionEmp and class
NonUnionEmp have a method Calpay. In a program, when a
message is sent, the system is able to determine which method actually
needs to be executed based on the object associated with the message.
For example, in the main program there are two lines of code that send

the message Calcpay as follows:

NewUnionEmp. Calcpay();
and
NewNonUnionkmp. Calcpay():

Object NewUnionEmp is an instance of class UnionEmp. Object
NewNorUnionkmp is an instance of class NonUnionEmp. The same
message of Calcpay is sent to the different classes and the system takes
care of executing the correct method. ‘Lo calculate pay for all possible
types of employees, the programmer has to remember only one message.
This capability is known as polymorphism and helps to simplif y
program mainlenance. Polymorphism is a feature of the language and is
more naiural {or the programmer than trying to make up new names for

each possible variation on the same basic function.

38

ACCIDENTAL MODIFICATIONS.

Care should be exercised when making modifications to a program
so that problems do not result from the modifications. QOOP languages
have 4 feature of encapsulation that helps prevent accidental
modifications. Encapsulalion {imits access to the dala and methods in a
class. By limiting the access, fewer classes and programs will have the
ability 1o modifv data. Without access to data, it is impossible (o

accidentally modify the data.

Iets take for example, the problem similar to the one described in
the error detection section of chapter 4 on maintenance in POP. The
programmer hias been notified that the payroll calculation detail report is
showing incorrect overtime amounts for all union empioyees. In our
example in chapter 4, the error was a move in a non-union calculate
payroll paragraph that accidently reset the overtime rate field (otrate) for
union employees. In our example in FIGURE 5.0, this would not be
possible. The data field oirate is in the private area of the class
UnionEmp which means that no class outside of the class UnionImp
has the ability to change thas field. "this language fealure helps prevent

accidental modifications in OOP languages.

The programmer can cause errors in object oriented programs, but
the chances are significantly tower because of encapsulation. If a
program or class cannot access certain data, it would not be able 10

accidently modify that data.

5%

B N

IRROR DITECTION

Finding errors in programs can be a difficult and time consuming
task. Fortunately the QOP language (ealure of encapsulation has helped
decrease the time it takes 1o find errors. Encapsulation, both groups the
data and methods together into one class and provides controlled access

to the data and methods which helps in error detection.

['or an example ol a program bug for the object oriented program in
FIGURE 5.0, suppose there is an error in the method CakPgy in the
class UnionEmp. The formula contains a typographical error. The

statement should have read as [ollows :

totpay = (hours * salary) + otpay
[nstead, the leading (" was left off the field totpay as [ollows :

otpay = (hours * salary) + atpay

The method thal prints the umion detail report line is found in the class
UnionEmp. The fields that are printed on the report are either passed to
the constructor method Z/aroalmp or they are calculated values within
the class UnionEmp. Since the field printed in error was both totpay and
olpay, the only two possibilities are that either incorrect information was
passed to the constructor or that methods and/or data within the class
UnionEmp definition are incorrect. The maintenance programmer would
probably first look at the class UnionEmp and the method Calelay and

should then see the mislake.

With encapsulation, the programmer is more quickly able to narrow

down the possible locations that may have caused s problem. This
certainly reduces the time speat on error detection and correction which
reduces program maintenance time. Encapsulation is a language feature

thal is a natural part of programming in OOP languages.

CHHANGE CONTROL

Lncapsulation is also a helpful language feature in relation to
program changes.32 With encapsulation, sisce data and method access is
controtled by the class, it is fairly easy to determine whal impact there

would be if a change must be made 1o the class.

As an example, lets assume the change as described in the change
control section of chapter 4 where the job code field positions 3 through
5 can no longer be used directly to determine whether or not an
employee is union. In FIGURIL: 5.0 the class Employee has a method
/sUniop that must be modified 16 accept the new method of determining
if an employee is union. Assuming that all object oriented programs
within the company usc the class Employce and the method Js&aion,
no programs other than the class Employee should have to be modified.

The code modifications are isolated 1o one method in one class. No

320ne programmer from McDonnell Douglas specifically mentioned
encapsulation as being very effective at localizing programming changes.

61

programs outside the class mployee had to understand the way the

class Employee determines an eraplovee was union. This change which
can be a major impact in POP languages was a minimal change to this
object oriented program. The new class definition would look as [ound

in FIGURE 5.1 with the changes in bold and italics.
FIGURE 5.1 - Employee Payroll Report in C++ with Job Family change

#include <iostream.h> /! 10 areas
/* Beginning of Class Employee definition */
enum boolean {false, true}; //false =0 ; true = |

class Employee { /f Class Employee defimition
private: /l Accessible only to s class
char *last_name; /{ pointet 1o last name
char *{irst_name; /! pomter to first riame
char *job_code; /{ pomter to job code
char grade{2]; /{ 2 character string for job grade
char freldf2f !l 2 character string for job field
char fam_indx I} 1 character string for family lable index
char family[3}; /3 character string for family from table
long soc_sec_no; // Long it value for social security number
boolean in_union; /{ Boolean that tells if employee is in union
public: /f methods accessible by all classes

f* I 3 string and 1 numeric parameter is passed to this constructor, ¥/
/* the private fields will be set equal to the values passed */
Employee(char In[20], char {n[15], char jcd[$], long ssn)

{

last_name = lno: 4 Covles name parm to private data item
first_name = fn; } Coples name parm to private data item
job_code = jed; // Copies job code parm to private data item
sSOC_sec_no = 5Sn; /7 Copies soc secno parm to private data item

/* Joh grade is the same as the first 2 positions of job code */
grade[0] = job_code [0]; // Position 1 of job code to position 1 of grade
grade[1] =job_code {1]; // Position 2 of job code to pesition 2 of grade

62

e O TR MR R

FIGURT 3.1 continucd

/¥ Job family is the same as the last 3 positions of job code ¥/

feldf0f = job_codef2f: If Position 3 of job code 1o pos. 1 of famuly
/}elq'/// =/bb_cadc/3,d' /f Pasition 4 of ioh cade to pos. 2 of family
fﬂﬂ_lﬂdjfaf =/bb_cavle/4,£' {1 Position 4 of job code to pos. 2 of family
}

/* Returns true if the employes is union othererse returns taise */
boolean Jslaroal);

{
/¥ care goes here o search the family table for a match %/

7% on the family code. The value ffom the lable search %'
/% is moved o the field family %/
t (strncmp (family,"100",3) ==0)
n_union = lrue;
else
{
il (strncmp ([amily,"200",3) == 0)
n_union = true;
else
in_union = false;
h

return in_union;

}

/% Prints 3 strings and 1 long inleger */
{* which are lastname, first name, job code and social security number®/

void Print ()
{

coul << last_name << " " << [irst pame << "
<< s0c_sec_no << " " << job_code << "\a";

15 /{ End of Class Employee Definition

63

A L YA T Y A ————

SUMMARY

In summary, object oriented languages have language features that
help reduce program maintenance time. Polymorphism helps reduce the
work that a programmer must do 1o determine which of the similar
functions is needed to perform a task. Scveral similar functions acting on
ddferent classes can all have the same name (i.e.. function overloading)
and the system will determine for the programmer which of the functions
should be executed. Encapsulation helps prevent accidental
modification of dala since classes and programs are restricted from
accessing many data items 1o olher classes. With no access, it is
impossible to modify the data. Encapsulation heips the programmer
detect errors quickly since the error is isolated and the programmer can
quickly narrow the possible arcas that would have had access to the data
or method. Encapsulation is also helpful when making changes to a
class. Usually only the class and its sub-classes will require a change.
Other classes and programs usually require no change at all. Since
polymorphism, encapsulation and function overloading are {eatures of
the OOP language. they will be used by the programmer more naturally

then forcing the use of 2 programming technique.

64

CHAPIER®
CODFE REUSE OVERVIEW

Code reuse can be accomplished in many different wavs. Anytime
code from an existing application is used to develop a dilferent
application, code reuse has taken place. Some examples are:

(1) Use exasting functions by copying the code into the program.
The common function becomes part of the new source program.

(2) Use the copy stalement 1o copy the source in at compile lime.
The common function is not part of the new source program but
i part of the object code for the new program,

(3) Use the call statement 1o run common functions from a run-time
library. Both source and object for the common [unction are
separate [rom the new program calling the common function.

{4) Develop new code that inherits data and methods from existing
code.3

The above examples can be accomplished with programming
techniques and language features available to both procedure oriented

programming (POP) and objeci oriented programming (OOP).

During my research {or thus thesis, I talked with several
programmers who said there was an unspoken understanding in their
organizalion that code reuse was expected of them. In some cases the

programmers even received training in the arca of code reuse.34

33 Daniel G. Bobrow, "The Object of Desire”, Datamation, 1 May 1989,
page 38.

34 At least one programmer [rom both McDonnell Douglas and AT&T
bad atlended a company sponsored class where code reuse was part of
the {raining.

Only the programmers using QOP felt that code reuse has been
successfully used, m their work cnvironment.?® Regardless of the
programmung slyle, there are some general reasons to explain why code
reuse 15 either not working or why it is only moderately successful.

Some of those explanations are:36

(1) The programmer is nol aware that a common function exists or is
not able 1o easily find the name of the common function.

{2) l'he programmer has a lack ol confidence in the existing common
funclion.

(3) The function needs to be slightly modified to suit the new code
antd rather than modifying the existing function to make it more
generic, a new {uinction is created.

As we have seen, program mainiepance is the major cost for
programming shops today. Code reuse will not only help reduce
development time on new software but it can also help reduce

mainienance costs on old software for the following reasons:37

(1) Shared common functions result in fe wer lines of code (o
mainiain.

(2) The accuracy of the reused code is greater than the accuracy of
programs coded from scraich. Reused code will have gone
through more compleie testing then the code developed from
scratch. The more a piece of code is reused, the better the
chances for working out all of the bugs.

35 At least one programmer from McDonanell Douglas, AT&T, and
Computer Arlisans felt thal code reuse has been successful from them.

36 Ted J. Biggerstall and Alan J. Perlis, Software Reysabilitv ;

Applicaiions and Experience, Addison-Wesicy Pub. Co., 1989, page 2.

3 Will Tracz, Soltware Reuse ; Emerging Techpology, IEEE Computer
Society Press, 1988, page 35.

(3) Programs will follow a standard interface to a piece of reusable
code. A new prece of reusable code will have the same interface
to the program as the old code. Ilere we only have to recompile
the module that we changed and not each of the programs (hat
use it

Code reuse is an important part of the fight (o reduce the cost of
program mainlenance. [he options available {o promole code reuse are
the same options available {o reduce program maintenance.

(1) Use programuanng loofs to improve location and retrieval of
common functions.

(2) Make sure programmers use the Jenguage lechnugues and fealures
available for the chosen language.

(3) Chooswmg a dilerent laaguage or stvie of fagguage 1o {ind one
better able to promote code reuse.

PROGRAMMING TOOLS

Ogne ol the problems mentioned carlier is that programmers are gol
aware of existing common {functions or they do not know the names of
the functions. This can be partially solved by the use of commercially
available library tools. Many of these tools have search capabilities 1o
help in locating the function needed by a programmer. Without this type
of tool il may be difficull 1o store and easily find a common function that
will fit the needs of a new application. The programming tools that allow
storage and easy retricval of common functions will help only if these

functions are kept in libraries accessible to other programmers.

&7

TT.CHNIQUES AND FEATURES

A person should always program as though the code being
developed will probably be reused. If a function being developed has
potentral for being reused, the developmeant programmer should desiga
the function so it can be easily reused. The design should inciude the
following:

(1) Plan for future problem domains

{2} Good documentatlion
Plan for future problem domains

The programmer must use planning to develop code lhat can be
easily reused. The programmer must think ahead about what pieces of
informalion in the current problem domain may not be exacily what will
be needed by any fulure problem domains. If some of this variabie
information is passed inlo the program using parameters rather than
hardcoding the information, the code will be usable for more applications

than &t would have been with the hardcoding.

Good documentation
Good documentation is important i code reuse. Regardiess of the
language style and the method of reuse, the development programmer

peeds to document each of the following that applies

(1) 'The purpose of the lask (implemenled as a function or
procedure.)

{(2) The variables thal must be defined.

(3) The type and number of parameters that must be used.

(4) 'The data and methods if any that can be inherited.

68

‘This constdutes a clear definition of the formal and actual parameters thal

allow communication between a main program or a sub-program and a
function or procedure. This type of documentation called an interface
specification, 15 a technigtue that can be apphed to the language. It can
help other progrummers decide if a function or procedure will fit their
programming need and at the same time provide information to the

programmer on how {o use the function or procedure.

There are some inherent language styles that promote code reuse by
providing language features38 such as inheritance and templates in OOP.
It 1s much better to have language features that promote the reuse of code
rather than forcing the programmer to remember to apply techniques to
the language. Even though a language feature may be more successful
for code reuse than a programming technique, they can be used together

to more strongly support code reuse.
CHOOSING A DIFTTLRENT LANGUAGLE

Since code reuse can help dramalically reduce program
development and program maintenance lime, it is strongly suggested that
a programming shop use the language best able to promote code reuse.
U code reuse has not improved after usiag the tools, lechniques and
features of the chosen language, the programming shop should consider

choosing a different language. This may be as minor as going from one

38Ted J. Biggerstaff and Alan J. Pertis, Software Reusability : Concepts
and Models, Addison-Wesley Publishing Company, 1989, page 36.

69

procedure oriented language to another or ds major 4s gotng frowm a

procedure oriented language to an object orienled language.

SUMMARY

‘There will always be some programmers that will resist code reuse,
but for the most part, if programmers are using a language that has
features to inherently promote reuse, it will start to happen since less
effort is required of the programmer. In summary, chapters 7 and 8 wiil
deal with the differeaces between OOP and POF that causes OOP to be

more successful at code reuse. FIGURE 6.0 lists two areas where code

reuse 1s handled dilferently in OOP and POP.
FIGURE 6.0

(1) Writing reusable code.
(2) Making minor changes 1o reusable code.

70

CHAPIER 7
CODY, REUSE IN POP

Code reuse in procedure oriented languages has not been very
successful.39 This style ol language does not inherently promote code
reuse. Instead, the demand is on the programmer fo use techniques (o
reuse existing code. 1his chapter will look at procedure ortented
programmung {POP) and how it addresses the two areas of code reuse as

dentified 10 FIGURIL 6.0.

To continue our payroll example from Figure 4.0 in Chapter 4, a
common function could be wrilien (o calculate the weekly pay. This is
especially useful if other programs will need to do the same calculation

and can take advantage of reusing this function.

WRITING REUSABLE CODE.

To write reusable code, the programmer must try to keep the
function general enough so that it can handle simple variations of the

main funclion. For example, a calculate pav function must be able to

33This seems to be agreed upon by current articles and programmers
actually Irying to reuse POP code.

Grant Buckler, "OOP is more than a buzzword”, Computing Canada,
September 1991, page 31.

All programmers using POP agreed that code reuse is either moderately
effective or not very effective in their organization. These programmers
were from JWP Controls, McDonnell Douglas, Home Savings of
America, and Tripos.

71

handle dilTecent salaries, salary formats. hours worked and overtime rates

by accepting these values as variables or parameters. In our problem
domain. the salary for union employees is stored iz an hourly formal and
the non-unicn emplovee’s salary 1s stored in a weekly format. To be able
(o determine the salary lormal, the job family will also be treated as un
mput variable or parameter. A technique to naming variables in COBOI.
is o prelix the name with 100 or 200 to distinguish an input variable or
parameter from an output variable or parameter. The input variables or

parameiers will be as follows:

(1) 'The salary will be named 100-SALARY.
{2) 'T'he hours worked will be named 100-HOURS.
(3) The job family will be named 100-FAMIL.Y.
{4) 'The overtime rale will be named 200-O'TRAJE.
‘T'he output of the function would be the calculated pay for the employee.

Ouiput variables or parameters will have the prefix of 300.

(S) 'Thetotal pay will be named 300-TOTPAY.

(6) The overtime pav will be named 300-O1PAY.
COBOL does not distinguish belween input and ouipul parameters.
There is no way in COBOL 1o prevent the function from making changes
{o the mnput variables.

FIGURE 7.1 below shows the calculate pay paragraph as reusable
COBOL code.

72

FIGURE 7.1 - Calculate Pay COBOL. paragraph in reusable code

000U-CALUPAY.
IF 100-88-TINION-EMPLOYEE
MOVE 100-5ALARY TO 200-SALARY

ELSE
COMPUTE 200-SALARY = 100-SALARY / 206-FULLTIME-HQURS.

COMPUTE 200-OTHOURS = 100-HOURS - 260-FULLTIME-HOURS.
[F200-OTHOURS <0

MOVE § TO 200-OTHOURS

MOVE 100-HOURS TO 200-HOLD-HOURS
ELSE

MOVE Z)0-FULLTIME-HOURS TO 200-HOLI-HOURS.

COMPUTE 300-OTPAY =

200-SALARY * 100-OTRATE * 200-CTHOURS.
COMPUTE 300-10TPAY =

Z00-SALARY * 200-HOLD-HOURS + 200-OTPAY.

In POP, and in particular COBOL., the programmer will choose one of

the [ollowing formats of making this code available for reuse0 :

{1) COPY command.
(2) CALL command.

Copy command

With the source code for a COBOL. function stored in a source
library, the programmer can use the COPY command o bring the source
into the program at compile time. This copy member usually does not
contain all of the divisons required to make a complete COBOL program.
[t is meant to be copied into a program that alicady has the required

Tom Caldwell, "Putting Effective Maintenance into Practice”,

Computing Canada, 25 October 1990, page 44.

73

COBOL divisions. These required divisions include the

IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA
DIVISION and PROCEDURIL DIVISION. 'The code in FIGURE. 7.1
would be stored 1n a source library with the member name of
CALCPAY. All of the variables mentioned in 0000-CAL.CPAY must be
defined in working storage of the main program (i.e. 100-SALARY, 100-
HOURS, 100-FAMILY, 200-O1RAIE. 300-101TPAY, 300-O1PAY.
ETC.). To copy the source into the main program, the following
command should be found in the PROCEDURE DIVISION immediately
tollowing the paragraph that performs 0000-CAI.CPAY. The copy

command would look as follows:

COPrY CALCPAY ['ROM fbrary-name.

74

The source for the main program and the source for the CALCPAY

fupction are stored separately but thev are brought together at compile

tume as seen in FIGURL 7.2,

FIGURE 7.2 - COPY COMMAND COMPILE DIAGRAM

Sub-program
Souzce Code

Main Program
Sgurce Code

Main Progrem
and

Sub-pragram

Chject Code

The copy command is used quite often at McDonnell Douglas
Aerospace [nformation Services with its COBOL programs. In fact, they
even wrote a COBOL pre-processor 1o improve the use of the copy
command. The pre-processor allows the programmer to use a {ile fayout
that contains asterisks where the numeric prefix would normally be. The
preprocessor changes the asterisks 1o a numeric prefix requested in the

copy statement.

COPY EMPLOYEE PREFIX=100 LIB=PROD

75

Therefore a lige of code ***-NAME., {ron: the lile layout TMPLOYLE,

would be modified using the preprocessor to be 100-NAME. This

allows flexibility to the copy library members.

FIGURE 7.3 below shows a sample main program that uses the
CALCPAY reusable code in copy form.

FIGURE 7.3 - Main program that has Copy command

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.

FI) REPORT-FILE

DATA RECORD I3 REFORT-RECORD.

01 REPORT-RECORD PIC X(133).
FD INPUT-FILE
DATA RECORD IS INPUT-RECCRD.
91 INPUT-RECORD PIC X(80).
* The data area is in the working-storage section.
WORKING-STORAGE SECTION.
01 100-EMPLOYEE-RECORD.
05 100-LAST-NAME PICX(20).
05 100-FIRST-NAME PIC X(15).
05 100-DEPARTMENT PICX([04).
05 180-JOB-CODE.
10 100-GRADE PICX(02)
10 160-FAMILY PIC X([03).
8% 100-88-UNION-EMPLOYEE VALUE 100",
2007,
05 100-3SN PIC 9{09).
05 100-SALARY PIC 9{6)v99.

05 100-HOURS PIC 9(3)¥99.

76

FIGURE 7.3 continued

1 200-HOLD-AREAS.

05 200-OTRATE PIC 9{31v99 VALUE 0.
b5 200-HOLD-HOURS PIC 9(3)¥99 VALUE 0.
05 200-OTHOUPS PIC 9{3) V99 YALUE 0.
85 200-UNION-OTRATE PIC 9{3)V99 VALUE 1S,
05 200-NONUNION-OTRATE PIC%{3)v99 YALUE 1.0.
05 200-FULLTIME-HOURS PIC3(02) VALUE 40,
01 308-CALCULATED-AREAS.
05 300-0TPAY PIC 9(6)v99 VALUE 0.
05 300-TOTPAY PIC 9(6)¥9Y YALUE(

* The mal: program and paragraphs are found in the procedure division.
PROCEDURE DIVISION,
Y0UG-MAINLINE.
PERFORM 1000-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS
IINTIL 208-END-OF-FILE = "YES".
PERFORM 3000-TERMINATION.

IGB0-INITIALIZATION.
* QPEN FILES, DO INITIAL READ

2000-PROCESS-EMPLOYEE-RECS.
IF 100-88-UNION-EMPLOYEE
MOVE 200-UNION-OTRATE TO 200-OTRATE
ELSE
MOVE 200-NONTINION-OTRATE TO 200-OTRATE.
PERFORM GO0G-CALCPAY.
PERFORM 2200-PRINT-REPORT.
PERFORM 8000-READ-EMPLOYEE-REC.

COPY CALCPAY FROM PRODLIB.

¢200-PRINT-REPORT.
* BUILD AND PRINT REPORT LINE

8000-READ-EMPLOYEE-REC.
* READ AN EMPLOYEE RECORD

3000-TERMINATION.
* CLOSE FILES AND DISPLAY COUNTERS

77

Call comsmand

The second format of making code available in @ run-time library is
the CALIL command. A run-time library is a collection of compiled
programs. A compiled version of a function can be saved in the run-time
library so the object code is available for reuse. The object code for the
mlain program and the object code for the CALCPAY function are stored

separately and brought together at run time as seen in FIGURE 7.4.

FIGURE 7.4 - CALL COMMAND COMPILE AND RUN DIAGRAM
Main Program Sub-program
Source Code source Code
l CONPILER l ‘ COMPILER l
Main Program
Object Cods

Run-tima Exacutiun]

Saub-program
Object Code

Acts as one ohject

Because the compiled main program and the compiled reusable function
are stored separately, the data must be passed into the function from the
main program through the usc of parameters. Careful use of parameters

can lead to functions casily reused by a variety of different applications.

78

COBOL lists parameters in the main program immediately [ollowiny the

USING statement of the CALT. command. An example main program
that uses a call statement is shown in FIGURE 7.3, shows the parameters
passing data into the sub-program arc 100-HOURS, 100-SALARY, 100-
FAMILY, and 200-OTRATE. The parameter passing data from the sub-
program to the mamn program is 300-TOTPAY and 300-OTPAY.
FIGURE 7.5 - Man program thal has Call command

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION,
FILE SECTION.
D REPORT-FILE
DATA RECORD IS REPORT-RECORD.
01 REPORT-RECORD PICZ(133).
¥Dr INPUT-FILE
DATA RECORD IS INPUT-RECORD.

61 INPUT-RECORD PIC X(80}.
* The dala area is in the working-storage section.
WORKING-STORAGE SECTION.
01 180-EMPLOYEE-RECORD.
65 100-LAST-NAME PIC X{20).
05 1B0-FIRST-NAME PIC X[15}.
05 10-DEPARTMENT PIC X[04).
05 100-JOB-CODE.
10 100~-GRADE PIC X(0Z).
10 100-FAMILY PIC X(03).
88 100-88-FAMILY VALUE "100",
200",
85 100-85N PIC 9(09}.
5 100-SALARY PIC 3(5]v99.
05 100-HOURS PIC 3(3]V99.

79

TTGURE 7.3 continued

01 200-HOLD-AREAS.

05 200-OTRATE PIC 9{3jv99 VALUE €.
05 208-HOLD-HOURS PIC 9{3)V39 VALUE .
05 200-OTHOURS PIC §(3)V99 VALUZ 0.
05 200-UNION-OTRATE PIC 9(3)V99 VALUE LS.
05 200-NONUNION-OTRATE PIC 8(3)V89 VALUE 14,
05 200-FULLTIME-HOURS PIC9{02) YALUE 10,
01 300-CALCULATED-AREAS.
05 300-OTPAY PIC 9{6]v99 VALUE 0,
05 300-TOTPAY PIC 9{61V39 VALUE D

PROCEDURE DIVISION.
0000-MAINLINE.
PERFORM 1800-INITIALIZATION.
PERFORM 2000-PROCESS-EMPLOYEE-RECS
UNTIL 200-END-OF-FILE = “YES".
PERFORM 3N0G-TERMINATION.

1000-INITIALIZATION.
* QPEN FILES, DO INITIAL READ

Z000-PROCESS-EMPLOYEE-RECS.
IF 100-83-UNION-EMPLOYEE
MOVE 200-UNION-OTRATE TO 200-OTRATE

EL3E
MOVE 00-NONUNION-OTRATE TO 200-GTRATE.

CALL CALCPAY USING 100-SALARY
100-HOURS
100-FAMILY
200-OTRATE
300-TOTPAY
J00-OTPAY.

PERFORM 2200-PRINT-REPORT.
PERFORM 8000-READ-EMPLOYEE-REC.

2200-PRINT-REPORT.
* BUILDS REPORT LINE AND PRINTS.

AID-READ-EMPLOYEE-REC.
* READ AN EMPLOYEE RECORD

3000-TERMINATION.
* CLOSE FILES AND DISPLAY COUNTERS

80

In the sub-program, parameters are listed following the USING

statement (o the PROCEDURE DIVISION statement and they are defined
in the LINKAGE SECITON . The order of the parameters in the sub-
program must match the order of the parameters in the main program. As
stated earlier, the compiled version of the CALCPAY function will be

stored in a run-time library for reuse. FIGURE 7.6 shows the source

code for the sub-program CAL.CPAY.
FIGURE 7.6 - Sub-program for calculating pay (CALCPAY)

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL
DATA DIVISION.
FILE SECTION.
* The data area 15 in the working-storage section.
WORKING-STORAGE SECTION.
§1 200-HOLD-AREAS.
95 200-FULLTIME-HOURS PICY(3) VALUE 40.
05 200-HOLD-HOURS PIC 3{3)V9Y VALUEQ.
05 200-0THOURS PIC 9(3)V9Y VALUE 0.
I.INKAGE SECTION.
01 100-SALARY PIC 9(6)V99.
01 100-HOURS PIC 9(3)V99.
01 100-FAMILY PIC X(03).
88 100-88-UNION-EMPIL.OYEE VALUE "100",
"200°.
01 200-OTRATE PIC 9(3)V99.
01 300-TOTPAY PIC 9(6)V99.

01 300-OTPAY PIC 9(6)V99.

81

FIGURFE 7.6 continued

PROCEDURE DIVISION USING 100-SATARY
100-HOURS
100-FAMILY
200-OTRATE
300-TOTPAY
300-O1TAY.

J00I-CALCPAY

[F 100-88-UNION-EMPLOYEE
MOVE IM-SALARY TO 200-SALARY

ELSE
COMPUTE 206-SALARY = 100-SALARY / 200-FULLTIME-HOURS.

COMPUTE 200-OTHOURS = 100-HOURS - Z00-FULLTIME-HOURS.
(F200-OTHOITRS <0

MOVE 0 TO 260-OTHOURS

MOVE 100-HOURS TO 200-HOLD-HOURS
ELSE

MOVE 200-FULLTIME-HOQURS TO 200-HOLD-HOURS.

COMPUTE 300-OTPAY = 200-SALARY * 200-OTRATE * 200-OTHOURS
COMFPUTE 300-TOTPAY = 200-SALARY * 200-HOLD-HOURS + 380-OTPAY.

wex GOBACK means ta return from the called program

GOBACK.

Comparing copy and call commands.

There are advantages 10 both the COPY and CAI 1. statements.

[Lach siluation must be evaluated separatcly to delermine which method

would be best.

Using the COPY command rather than the CALL command will

result in faster run-time. With the COPY command, (he reusable code is

part of the object code [or the main program so the svstem does not have

{0 search for the object form of the reusable code at run-time. With each

82

CALL stutemeat, the svstem lias (o search through a run-time library for

the reusable object code. If the function is Lo be used lrequently, the
programmer should probably consider making the source available with

a COPY stalecment.

Using the CALL command will make the reusable code more
[lexible to changes. [a change needs to be made to the reusable code.
the code can be modified, recompiled and put back imto the run-time
library. Mosl iikely no change will need to be made to the programs that
reuse this code. It a COPY command was used and the reusable code
had to change, each program that uses this reusable code would have to
be recompiled. If the reusable code is expected to change very often and
if a large number of programs share this code, the programmer would

probably want (o consider using the CALL statemcnt.

With cither method, the [unction should be cohesive so that it
performs only one task and it should be clearly documented so it 1s clear
to all programmers the purpose of the function. Depending on the needs
of the application, the reusable code could be made available in either or

both methods.

MAKING MINOR CHANGLS 1O REUSABLE CODE.

Lets assume that a programmer was lold that managers would no
fonger be paid for working overtime hours. Regardless of how many
hours worked for the week, a manager will always receive pay equal lo
one weeks salary. In our example problem domain, we were able to

83

identif v union employees as having a job family of "100" or "200". Now

lets assume that managers can be identified as having a job family of
"900". All managers will receive ther weekly salary regardless of
whether or not they work overtime. The reusable code written above in
paragraph 0000-CAL.CPAY will work for the calculation of managers
pay with only a few modifications. There are two techniques that will

allow the programmer to reuse the above code.

(1) Moddy the existing code lo work for both the existing and
new appiications,

(2) Copy he existing code 10 a new program and modify it to
meel the needs of the new application.

Modify the existing code

Modit ying existing code has un advaatage of fewer lines of code
since the parts of the code (hat are common can be shared by many
applications. Less code usually means iess maintenance work since there
will be fewer untested conditions 1o cause [uture problems. If there i1s
only one calculate pay function, a correction would have (o be made in

only one function rather than multiple (unctions. Code was added to the

34

callable function from FIGURE 7.6 and the resuli cat be {ound in

FIGURE 7.7 with the changes in bold letters -

FIGURE 7.7 - Sub-program for calculating pay with Manager

modifications

[DENTIFICATION DIVISION.
ENVIRONMENT DIVISION
CONFIGURATION SECTION.
FILE-CONTROL

DATA DIVISION.

FILE SECTION.

* ‘The data area is in the working-storage section.

WORKING-3TORAGE SECTION.
01 200-HOLD-AREAS.
05 200-FULLTIME-HOURS PICY(3)

05 200-HOLD-HOURS PIC 9(3)V99
05 200-OTHOURS PIC 9{3)V99
LINKAGE SECTION.
01 100-SALARY PIC 9{6)V3S.
01 100-HOURS PIC 9{3j¥39.
01 100-FAMILY PIC X103).

48 100-80-UNION-EMPLOYEE

88 100-86-MANAGER

01 200-OTRATE PIC 9{3)v98.
01 300-TOTPAY PIC 9{6)¥98.
01 300-OTPAY PIC 3{6)V93.

VALUE 40.
YALUE G
YALUE 6.

YALUE "100%,
“200"
YALUE "300".

85

FIGURE 7.7 continucd

PROCEDURE DIVISION UZING: 1CALARY
1B0-HOM RS
WB-FAMILY
200-OTRATE
300-TGTPAY
300-OTPAY

(800-CALCPAY.

I[F 100-88-MANAGER
NEXT SENTENCE
EILSE
IF 100-88-UNION-EMPLOYEL
MOVE 160-SALARY TO 200-5ALARY
ELSE
COMPUTE 200-SALARY = 100-SALARY / 200-FULLTIME-HODRS.

IF 100-88-MANAGIER
NEXT SENTENCLE
ELSE
COMPUTE 200-OTHOURS = 180-HOURS - 200-FULLTIME-HOURS
[F 200-OTHOURS < B
MOVE 8 TO 200-OTHQURS
MOVE 100-HOURS TQ 200-HOLD-HOURS
ELSE
MOVE 200-FULLTIME-HOURS T 200-HOLD-HOURS.

IF 100-88-MANAGER
MOVE [00-SAILARY TO 300-TOTPAY
MOVE ZERO TO 300-OTPAY
ELSE
COMPUTE 100-OTPAY =
200-SALARY * 300-OTRATE * 200-OTHOURS
COMPUTE 300-TOTPAY =
280-SALARY * 200-HOLD-HOURS + 300-0OTPAY.

GOBACK.

Copy exusting code {o creale a ncw program
The second technique for code reuse is (o simply create a new
program from the ¢xisting program. If a new calculalc pay [unction were

created {or each type of employee, there would need to be 3 separate

36

functions thal were very similar. We would have a separate function for

calculating pay for union, non-union and manager type employees. Each
of these smaller and more easily understood functions would be less
complicated then the one large function wrilten above. Easy 1o
understand functions are cerlainly easier to mainlain then complicated
functions. Another advantage to having separate functions is that a
change to one function will not cause bad reactions to the other related
but separate funclions. Yet a disadvantage is thal many smaller but
similar functions can be difficult 10 keep track of and coordinate. One
department at McDonnell Douglas has documented standards promoting
the concepl of copying existing code to create a new program. This
concepl is only working moderately well because many of the
programmers do not 1ake the time to copy and document their code into
the code reuse library. Because there is not much code available in the
library, many programmers don't even take the time to look there or they

often forget it even exists.

87

SUMMARY

The POT technique of creating separate functions copied from an
existing function is the simpliest and probably the most common {form of
code reuse. It takes a tot of effort for a programmer to develop a generic
function that can be reused [or multiple applications. Programmers don't
wanl {o get involved with modifying a function to make it work for his
application and make sure il will still work for all the other applications
that are already using . For (his reason programmers will usually just
make a copy of the function and modify the copy for the use of the new
application. The result is overcrowded libraries that become difficult to
maintain. ‘The ideal situation would be to have as few a functions as
possible by modifying reusable code when necessary. When the
reusable code staris 1o reach the point of becoming 100 complicated, a
separate [unction should be writlen and the existing reusable function
should be left as it was. The techniques of modifying existing code or
creating a new function can both be used successfully in code reuse.

Using either technigue 15 betler than coding the function from scratch.

88

TR e

L e A S T, 2 ey

CHAPTER 8
CODE REUSE IN OOFP

In object oriented languages, code reuse has been fairly
successful.4! The success of code reuse in this language style is because

object oriented programming (OOP) inherently encourages code reuse.42

This chapter will look at OOP and how il addresses the two areas of code

reuse as identified in FIGURE 6.0.

WRITING REUSABLE CODE.

To wrile reusable code the programmer must plan the design of the
code so that many different applications can take advantage of reuse. It is
rare that code can coincidentally be reused. In most cases code that is
successfully reused was specifically planned for reuse. OOP has features

built into the language that help in the design and programming of

41This seems to be agreed upon by current articles and programmers
actually irying to reuse QOP code.

Grant Buckler, "OOP is more than a buzzword”, Computing Canada,
Seplember 1991, page 31.

Stuart Johnston, "OOP Hailed as Way of the Future”, [nfoWorld, 15 May

1989, page 17.
All programmers using OOP agreed that code reuse is either moderately

effective or very effective in their organization. These programmers were
from McDonnell Douglas, AT&T, and Computer Artisans.

12Alan Snyder, "Encapsulation and Inherttance in Object-Oriented

Programming Languages”, OOPLSA ‘86 Proceedings. 1986, page 38.

89

reusable code. In particular the following two OO language features are

useful :

(1) Inhernance

(2) ‘Templates
Inheritance

When a new class is derived from a root ciass, the new class is said
to have inherited data and methods from the root class. Any data and
methods found in the protected and public areas of the root class can be
reused by the derived class. When data and methods are inherited from
the root class, this means that the code defining the data and methods
does not have to be repeated in the derived class for the derived class 1o

use them. Inheritance has the following benefits :

(1) T.esscoding is required since some of the dala and methods for
the class can be taken irom the root class.

(2) Tl.ess testing is required since the inherited data and methods
have already been tested by other programs.

(3) Fewer lines of code to maintain since the classes that were
developed contain only the dala and methods that make the
derived classes different from (heir root classes.

In the Employee example of inheritance in FIGURE 2.4 of chapter
2, the derived class UnionEimp was created from the root class
Employee. As you can see in FIGURE 8.1, union employees are a
special type of employee with only a few differences that make it unique

{rom other types of employees. The differences between the class

90

Employee und the class UnionEmp are the following:

(1) A formula 1o calculaic the weeks pay.
(2) The union number and OTPAY for union members must be
printed on the report.

FIGURE 8.1 - Class Employee, UnionEmp, and NonUnionEmp

Employee

Emplayee
fillpian
Friot

NonUnionEmp

NonllmonFmp
CalcPay
Print
class UnionEmp inherits methads class NonllmionEmp inherits methods
Fmployes Isoion and Primi Employes, Islinipa and Prmt
from class Employse from class Employee

A class was defined to relate union cmployees [rom the root class
Employee. Class UnionEmp was able to inhenl the methods /sl/nron
and Prn {rom class Employec. In addilion 1o the print method that it
mnherited, class UnionEmp will have its own print function. Class
UnionEmp has access to the salary and hours worked for the union
employee. Since these iwo fields are not accessible to the class
Employee they must be prianted from the class UnionEmp. Since union
employee's weekly pay is calculated ditferently than other employee's
weekly pay, the class UnioaEmp should also have its own method to

calculate pay. This example has only a few {unctions to help make it

91

R e oy R T TR

T~ T S AT

easier to follow and understand. There could have very easily been

several methods and data that could have been inherited which couid

have saved cven more coding,

Code reuse through inheritagce happens often in QOP since it
occurs cach time a derived class is created. ‘Lhe language feature of
inheritance lets code reuse happen naturaily without much effort og the
part of the programmer. Since the development programmer will benelit
from code reuse and siace it happens naturally from using the language

feature of inheritance, code reuse is very common 1 QOP.

TEMPLATES

A function usually contains code to perform an action on one
specific type of data. A function tempfate can be defined that will let one
set of code work for multiple types of data. Without templates, if the
same action needed Lo be performed on different types of data, a separale
function would have to be written for each data type. Templates allow
the programmer to design a generic function that can perform a specidic
action on any type of data. A paramcter is passed to the function that
defines the type of data that the function should process. Stuart Johnstion

writes about Unix Systems Laboratories:¥

"[Template] enhances one of object oriented programming’s
most touled advantages over traditional languages - greater
code reusability ... Adding an even higher degree of code
reusability results in fewer errors and lower development,
testing, and maintenance costs, the company said.”

43 Stuart J. Johaston, “C++ 3.0 "templales’ give grealer code reusability”,
INIQ World, 14 October 1991.

92

e T e i SRy

‘Lhe benefils of using function templates are as follows:
g p

(1) ILess coding is required since only one function must be
written 10 perform the same action regardless of the data type.

(2) l.ess testing is required since the template would have already
been lested with cther data.

(3) TFewer lines of code must be muirtained since a single function
can be used {or multiple type of data.

FIGURE 2.8 shows a function template catied "min” that finds the
minimum value in an array of aumbers, regardless of the type of numbers
that are in the array. FIGURL 2.6 performs the same task as found in the
template of FIGURL 2.8, except that FIGURE 2.6 can only process an
mteger array. T'IGURL 2.7 pertorms the same task as found in the
template of FIGURE 2.8. except that FIGURE 2.7 can only process a real
array. By using the template and having only one function instead of
two, the programmer has 50% fewer lines of code (0 maintain. This has

the advaatage of the same logic being located in one place.

Hoth inheritance and templates are language features available in
OQOP that allow a programumer to reuse code. Inheritance has been
available to OOP since the creation of the language style and has been
successful al belping programmers 10 reuse code. Templates on the other
hand are fairly new to some OOP fanguages like C ++ and have not been
widely used in the real world. 1rade magavines?? and reference manuals
feel that templates will soon be a big help to the industry in developing

reusable code.

44 Start J. Johnston "C++ 3.0 ‘lemplates’ give greater code reusability”,
INIFO WQORLD, 14 October 1991.

93

e N R

MAKING MINOR CHANGES 10 REUSABLE CODE,

If a programmer was able 1o {ind a class that was almost exactly the

same as what 1s needed, the code from that class can be easily reused.

Through the use of inheritance, the derived class can change or add data

and methods as necessary that cause this class to be different from ils
100t class. No chaage would have to be made 10 the rool class so there
would be no impact on other classes or programs. As an example, lets
assume lhat 4 programmer was contacted 10 say that management
employees would no longer be paid overtime. No matter how many
hours they work, a manager will always receive pay equal (o his or her
weekly salary. In this case none of the existing classes of Employee,

UnionEmp or NonUnionEmp exactly fit the programmers needs. A

94

new derived class must be created for managers. The derived class

Manager can be seen in FIGURE 8.2 below.

FIGURE 82 - Class UnionEmp, NonUnionEmp, and Manager
inheritance from class Employee

Employee
Fmplopee
filimion
Print
nionEmp Mapager
Hnranki Nanager
alclay Calclay
Frint NonUnionEnp Print
N ans . ;
class UnionEwmp inherits methods ﬂgfp" e class Manager inherits methods
Fmplayea Islinion and Print Print Fmplopes [slnian and Frint
from class Employee from clacs Eaployee

class NonllnionEmp inhetits methods
Fmployes, Islinien and frint
from class Employee

95

'l'o reuse existing code and only define the code that makes this function

different, a new class will be written called Manager and it wili be

derived from the class Employee as scen in FIGURE 8.3 below.

FIGURE 8.3 - Sub-class of Manager

class Manager : Employee { {f Class Manager definition

private: /{ Accessible only to this classes
double salary; // holds salary for a Manager employee
public: {{ methads accessible by all classes

/* 1f 3 string and 2 numeric parameters are passed to this constructor, ¥/
f* the private field will be set aqual to the numeric value passed */
Manager (char IastName[20], char FirstName[15],
char JobCode(5], long ssa, double sal) :
Employee (LastName, FirsiName,
JobCode, ssn);
{ salary =sal; }

double Calcpay()

{ totpay = salary; }
void Prini()

{

Employee :: Print();
cout << salary <<" " << hours <<"" << totpay << "\n";

}

The programmer was able to quickly define a slightly modified
version of the class Employee 1o meet the new requirement. Those
programmers using the class Employee would not be impacted by this
change. Some programs may need modification so that they can now use
the class Manager where they were previously using the class

NonUnionEmp.

T T T e

SUMMARY

Inheritance is & very common OOP language feature that
successfully promotes code reuse. Nearly every object oriented
programmer bas used this language feature. C++ has a new language
feature called templates that was designed specifically for the purpose of

promoting code reuse. C4+ will soon have a positive impact on the code

reusc.

g7

I

CHAPTER 9
(_'()NCLUSII()NS AND RECOMMENDATIONS

Evervone should agree that maintenance cosls are currently very
much oui of hand and that something must be done to try and control
these costs. Most POP departments are trying to reduce the cost of
program maintenance by purchasing products to usc in support of their
POP language rather than considering an allernative programming style.
Some programmers will argue that (hey are able 10 use a procedural
programming language and still apply (he concepts of object oriented
programming.46 Tt is possible to simulate some of these concepts but
usually not cfficiently or easily. Bjorne Stroustrup addresses the concept
> simulating OOP by using a language style other than object oriented

languages.“"i

"There is an important distinction here: A language
supports a programming style if it provides facilities that
make il convenient (reasonably easy. safe. and efficient)
o use thal sivle. A language does not support a
lechnique if it takes cxcepuional effort or skill (o write
such programs: in that case, the language merely enables
programmers to use the lechmque. For example, you can
write structured programs in I'ortran and lype-secure
programs in C, and you can use data abstraclion in
Modula-2, but it is unnecessarily hard to do so because
those languages do not support those techniques.”

45 Each POP depariment that [spoke with, has multiple tools to them lo
help in reducing the time spent in program maintenance. These POP
depariments include McDonnell Douglas, Tripos. and JTWP Coairols

46 One department at McDonnell Douglas is trying to incorporate some
of the concepts of OOP into their COBO!. programs.

47 Bjarne Strousteup “What is Object-Orieated Programming?”,
1EEE Software, May 1988.

98

—

—
P—

-

From 4 maintenance standpoint, Q0L is better than POP since it

requires fewer function names to remember and coordinate. A POP
language like COBOL, treats its functions as paragraphs or callable sub-
programs and each must have unique names. QOP treats its functions as
methods within class defimtions. Oge program can reference severai
different class definitions and cach of thesc class detinitions can share the
same method name. The QOP capabilities require less work on the part
of the programmer and they happen as a natural exiension of the
language. Therefore, QOP is much better at providing fewer functions to
remember and coordinate since the system does much of that work for

the programmer.

POP languages such as COBOL, have no features or techniques to
help prevent accidental modifications. QOP helps prevent accidental
modifications by encapsulating classes to limil access to data and
methods. Accidental modifications are not totally eliminated with OOP
but they can be significantly reduced. Therefore, OOF is a beiter

programming style to prevent accidental modifications.

COBOL allows all procedures within the program to access any of
the dala in the program. This makes error detection difficult. In OOP, a
language feature called encapsulation can be applied to a class to help in
error detection. This makes OQP a superior language siyle in helping the

programmer detect errors.

‘The PO lapguage of COBOL has 10 specific language feature to
belp limit the impact of a program change. Fncapsulation. the same
OOP features that helps detect errors can also help limit the impact of a
change to a program. Theretore, OOP limits the impact of changes to a

program where POP is not able.

POP languages provide the ability to copy source code from a
library into a program. ‘The programmer must reuse code from the entire
copied program and cannol selectively choose the parts needed or
modify the program for only his application. In OOP, the programmer
can pick and choose which data and methods to reuse from existing
classes. QOP is therefore a betler language style at allowing the

programmer to create reusable code.

It a COBOL. procedural programmer [inds code that acts very
similiar to a function that he needs to write, the programmer can (1) add
the code so that it will work for the existng and new application or (2)
copy the existing code and make slight modifications to create new
separate code. 1f the object oriented programmer finds a class that is
very similar to what is necded, a derived class can be created that
contains only the code that causes the new class to be different from the
existing class. If code reuse only happens when someone remembers
to apply a technique, such as in COBOL, code will only occasionally be
reused. If however, code reuse happens as a result of using a language
feature, such as in OOP, code reuse will happen more naturally in the

design process.

100

In conclusion, definite maintenance and code reuse improvements

can be realized by using QOP rather than using POP. OOP is found to be
the next logical step for programming tmprovements beyond those

improvements experienced from using structured programming. 48

This thesis supports the hvpothesis that QOP is more successful at
reclucing mainienance costs and improving code reuse than POP. Ttis
therefore my recommendation that programming shops currently using
POP languages and experiencing high maintenance and development
costs seriously consider switching to an OOP language. Some
programming shops have a considerable amount of programs and
personnel irained in a specific language and may not be ready to throw
thal mvestment away and start from scratch with a2 new language. In
some cases it may be better to use an object oriented version of the
currently used procedural language. This may mean switching from C to
C++, from LISP to FLAVOR or from COBOL. to an object oriented
version of CORBOL. Object oriented COBOI. is currently being
developed by an international CODASYL task force.4?

8Dick Pountain, "Object-Oriented Programming”, BYTL, February
1990, page 157.

43Doris Appleby, "COBOL", BYTE, October 1991, page 130.

10¢

SELECTED BIBLIOGGRAPHY

Appleby, Doris, "COBOL", BYTL, October 1991, page 130.

Arthur, Lowell Jay, Soltware & i)
Chatlenge, A Wilev-Interscience Publicaiion, 1988.

Atwood, Thomas, "Applying the Object Paradigm lo Databases,”
Computer]anguage, September 1990. 36.

Bertino, Flisa, and l.orenzo Martino, “Object-oriented database
management systems : concepts and issues,” Computer, April 1991, 33.

Biggerstaff, Ted 1., Alan . Perlis, Software Reusability, Yolume I
Lo_r;ggpla_andﬁmgb ACM Press, New York, 1989,

Biggerstaff, Ted J., Alan J. Perlis, Software Reusability, Yolume I}
Applications and Experience, ACM Press, New York, 1989.

Bobrow, Daniel G., "1he Object of Desire”, DATAMATION, May 1,
1989, 37.

Borland C++, Borland International. INC., Calif ormia, 1991

Buckler, Grant, "OOP is more than a buzzword”, Computer Select, June
20, 1991, 31.

Butler, Martin and Robin Bloor, "Object Orientation,” DBMS July 1991,
page 17.

Caldwell, Tom, "Pulling Effective Maintenance into Practice,” Compuling
Capada, Qctober 25, 1990, 44.

Drotos, Diane and Slella Skerlec, "Creating a Rewarding Maintenance

Environment," Compuling Canada, October 25, 1990, page 42.
Duncan, Ray, "Power Programming, Redefining the Programming

Paradigm: The Move Toward OOPLS", PC Magazine, November 13,
1990, 526.

Duntemann, Jeffrey, "O0P: a new perspective on code and data”, PC
Week, November 14, 1988, 69.

102

Gorlen Keuh E., Sdnford M. ()rlow and Perry S. Plexico, Data
_++, John Wilev &

Son LTD., 1990Q.

Horowilz, Fllis, [
Science Press, 1983,

5, Computer

fiu, David, QO Lnvironment in C++, MIS Press, Inc., 1990.

Johnston, Stuart J., "O01 hailed as way of the future,” InfoWorld, May
15, 1989, 17.

Johnston, Stuart I.. "C++ 3.0 'templates’ give greater code reusability,”

InfoWorld, October 14, 1991.

Lippman, Stanley B., C++ Irimer, Addison-Wesley Publishing
Company, Massachuseits, 1991,

Marrs, Keith, "Object-Oriented Database Management Systems: The State
of the Art”", McDonoell Douglas Corporation Report B1639, 1989.

Martin, James, "QOP goes beyond the commonsense meaning of
"object’,” P’C Week, September 11, 1989, 76.

Mullin, Mark, Qbject Oriented Program Design with Examples i C++,
Addison-Wesley Publishing Company, Massachuselts, 1989.

"Objects at L.arge”, Release 1.0, September 19, 1990, page 4.

Parikh, Girish, Techniques of Program and System Maintenance, QED
Information Sciences INC., Massachusetls, 1988.

Peterson, Robert, "Object-Oriented Programming”, BYTE, February
1990, page 257.

Pountain, Dick, "Object-Oriented Data Base Design”, Al Lxpert, March
1987, 20.

Pratt, Terrence W, Progra
Prentice Hall INC., 1984,

Sharon, William David, "Comparing Object-Oriented and Structured
Methods,"” presented at Showcase VI, September 25, 1991, St. T.ouis,
MO.

103

Smith, Jerry D., Reusability & Software Construcuon C & C++, John
Wiley & Son, 1990.

Soyder, Alag, anapqulallon and Inheritance in Object-Oriented

Progranumng° Languages,” OOPSLA '86 Proceedings, September 1986,

Stroustrup, Bjarne, 1he C++ rogrammiag [anguage, 2ad edition,
Addison Wesley Publishing Company, Massachusetts.

Stroustrup, Bjarne, "What is Object-Oriented Programming?" IEEL,
May 1988.

Tracz, Will, Tutorial: Software Reuse: merging Technology, 1EEL The
Computer Society of the IEEF, 1988,

Urlocker, Zack, "Teaching object-oriented programming,” Journal of
Object-Oriented Programming, July-August 1989, page 45.

Van Genuchten, Michiel, “Why is software late?,” [LEE Transactions on
Sofiware Engineering, July 1991, page 582.

Verity, John W. and Evan 1. Schwartz, "Software Made Simple,”
Business Week, September 30, 1991, page 94.

Wemer, Richard S., and Lewis J. Pinson,

Asn Introduction to Qbject-
++, Addison-Wesley Publishing Company,
Massachusells, 1988,

104

	Program Maintenance and Code Reuse: Object Oriented Versus Procedure Oriented Programming
	tmp.1728050487.pdf.lp6Jv

