
Lindenwood University Lindenwood University 

Digital Commons@Lindenwood University Digital Commons@Lindenwood University 

Faculty Scholarship Research and Scholarship 

10-2024 

Fail Fast, Fail Small: Designing Resilient Systems for the Future of Fail Fast, Fail Small: Designing Resilient Systems for the Future of 

Software Engineering Software Engineering 

Jill Willard 

James Hutson 

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers 

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons 

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/faculty-research-papers
https://digitalcommons.lindenwood.edu/rs
https://digitalcommons.lindenwood.edu/faculty-research-papers?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages


SSRG International Journal of Recent Engineering Science                                                                 Volume 11 Issue 5, 51-58, Sep-Oct 2024 

ISSN: 2349–7157 / https://doi.org/10.14445/23497157/IJRES-V11I5P106                                                   © 2024 Seventh Sense Research Group®          

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Review Article 

Fail Fast, Fail Small: Designing Resilient Systems for the 

Future of Software Engineering  
 

Jill Willard1, James Hutson2 

 
1CTO XplorPay, Caledonia, IL, USA. 

2Art History, AI, and Visual Culture, Lindenwood University, MO, USA. 

 
1Corresponding Author : jill.c.willard@gmail.com 

Received: 08 August 2024                Revised: 11 September 2024               Accepted:  26 September 2024            Published: 15 October 2024 

 

Abstract - The principles of "fail fast, fail small" have emerged as critical in modern software and system design. By planning 

for minor, manageable failures instead of catastrophic breakdowns, developers can ensure that systems degrade gracefully, 

maintaining functionality even when encountering issues. This article delves into strategies for designing resilient systems, 

beginning with the concept of slow degradation and distributed systems that prioritize core functions while allowing non-

critical components to fail without significant user impact. The Netflix recommendation engine serves as a prime example of a 

system that continues to operate under failure conditions. Chaos engineering, a proactive methodology for stress-testing 

system robustness, is explored with real-world examples of its implementation. As AI continues to evolve, its role in identifying 

weaknesses and enhancing system resilience is becoming indispensable. The article highlights AI's potential to push the 

boundaries of chaos engineering and discusses the growing importance of hybrid cloud solutions, balancing cloud and on-

premise resources for optimized resilience. Future trends emphasize the need for service scalability based on business-critical 

classifications, allowing systems to prioritize resources effectively. Designing systems to "fail fast, fail small" is not only about 

mitigating risk but also about building adaptive, future-proof architectures that anticipate the unknown. 

Keywords - Fail fast, Chaos engineering, System resilience, AI-driven robustness, Hybrid cloud solutions. 

1. Introduction  
The "fail-fast, fail-small" design philosophy has been 

used broadly in strategies for innovative thinking from 

business management to ecology. However, it here will be 

recognized as crucial in building resilient and adaptable 

software systems [1-4]. The approach prioritizes the swift 

identification and containment of failures to prevent 

widespread system disruptions. Through the detection of 

issues early and confining them to small, isolated 

components, systems can continue to operate effectively 

even under duress, minimizing the impact on overall 

performance [5]. The concept draws from distributed systems 

design, where failures are expected and planned for, enabling 

the system to degrade gradually rather than collapse entirely. 

Such designs focus on isolating the points of failure and 

building redundancies that preserve essential functionalities 

[6]. The principle is vital in safety-critical environments 

where software-hardware interaction failures can lead to 

catastrophic outcomes. Researchers have emphasized that 

proactive fault analysis and the use of fault-tolerant 

architectural patterns are key to designing systems capable of 

managing such failures [7-9]. In practical applications, this 

approach is exemplified by systems like the Netflix 

recommendation engine, which continues to provide a 

seamless user experience even when parts of the system fail 

[10]. The architecture is designed to prioritize core 

functionalities, such as content streaming, over less critical 

services like recommendations, allowing the platform to 

remain operational despite internal failures. Through the 

allotment of fail-fast and fail-small principles, designers can 

create systems that perform robustly under stress, with 

controlled degradation that users might not even notice. 

Moreover, the integration of fault-tolerant mechanisms 

within software design—especially in distributed, cyber-

physical systems—supports a more adaptive and resilient 

operational framework, minimizing the need for costly 

interventions or shutdowns [11].  

Designing for small, manageable failures is a key 

strategy in modern software development, especially as 

systems grow in complexity and interdependence. The fail-

small principle emphasizes that by isolating faults and 

managing them at a micro-level, systems can maintain core 

functionality even in adverse conditions. The approach is 

essential in preventing minor issues from escalating into 

catastrophic system-wide failures [12]. For example, research 

by Geisbush and Ariaratnam [13] highlights that integrating 

reliability-focused designs early in the development cycle 

http://www.internationaljournalssrg.org/
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significantly reduces the risk of costly, large-scale 

breakdowns later. By anticipating potential faults and 

segmenting critical functions, systems can degrade gracefully 

rather than fail abruptly. The gradual degradation is 

especially relevant in cyber-physical systems where both 

hardware and software failures need to be considered 

together, as opposed to in isolation [14]. From a practical 

perspective, designing for manageable failures aligns with 

the broader goal of reducing operational risks while 

optimizing system performance. Implementing fault-tolerant 

architectures and redundancy mechanisms ensures that even 

if parts of a system fail, essential services continue to 

function, thus preserving user experience and operational 

integrity [15]. Furthermore, research suggests that early-stage 

prediction models that consider both hardware and software 

interactions are vital in designing systems capable of 

handling such small-scale failures effectively [16]. Adopting 

these models not only aids in fault management but also 

contributes to a proactive maintenance strategy, ultimately 

leading to more resilient and reliable systems. The emphasis 

on localized fault management reflects a shift in design 

philosophy, where systems are built with the expectation of 

failure and equipped to handle it gracefully.  

Given the increasing complexity and interconnectivity of 

modern software systems, the need for resilient designs that 

incorporate small, manageable failures is more critical than 

ever. The principles discussed in this introduction highlight 

how proactive strategies, such as fault tolerance, early-stage 

reliability modeling, and distributed system architectures, 

offer significant advantages in mitigating risks associated 

with unexpected failures. By focusing on gradual system 

degradation and maintaining core functionalities even when 

peripheral components fail, systems can deliver consistent 

user experiences and avoid catastrophic breakdowns. 

Building on these foundational insights, this study will 

explore recommendations for future development by 

examining three critical areas (Table 1). First, the strategies 

for planning failures within distributed systems will be 

discussed, highlighting how gradual degradation and robust 

design choices, like those implemented in Netflix’s 

recommendation system, ensure seamless user experiences. 

Second, the principles of chaos engineering will be explored 

as a method for testing and reinforcing system resilience 

through controlled failure scenarios. Finally, the role of AI in 

future failure management will be assessed, focusing on its 

ability to detect vulnerabilities, enhance chaos engineering 

practices, and optimize hybrid cloud solutions that balance 

cloud and on-premise resources. These sections will provide 

a comprehensive set of recommendations to guide the 

development of next-generation systems that are resilient, 

adaptable, and capable of thriving in failure-prone 

environments. 

2. Literature Review  
The "fail-fast, fail-small" concept in software 

engineering has its roots in the broader discipline of fault-

tolerant system design. Originally, fault tolerance focused on 

ensuring that systems could continue operating despite the 

presence of component failures, primarily through 

redundancy and error detection mechanisms [17]. In the 

1980s and 1990s, software development began incorporating 

these principles with an emphasis on fast detection and 

resolution of faults at early stages [18]. Early research in this 

area primarily addressed large, monolithic systems where 

failures could cascade, leading to catastrophic outcomes [19]. 

The introduction of distributed systems and microservices in 

the 2000s shifted the focus towards isolating failures within 

smaller, self-contained components. This evolution allowed 

systems to limit the impact of failures and continue providing 

essential services even when individual parts failed [20].  

    

Table 1. Designing resilient systems 

Key Area Summary Future Trends 

Fail-Fast, 

Fail-Small 

Concept 

Fail-fast and fail-small strategies focus on quick 

detection and containment of failures, isolating faults 

to prevent larger disruptions. 

AI integration will drive more 

sophisticated failure management 

strategies that anticipate and mitigate 

issues before they occur. 

Planning for 

Failure 

Designing systems that degrade slowly ensures core 

functions remain operational even during partial 

failures; distributed systems and prioritization are key 

strategies. 

Systems will increasingly rely on hybrid 

architectures and prioritize user experience 

during degraded operations. 

Chaos 

Engineering 

and 

Resiliency 

Chaos engineering involves intentionally inducing 

failures to test system resilience; AI enhances these 

practices by optimizing fault scenarios and reducing 

risks. 

Further development of AI-driven chaos 

engineering frameworks will enable more 

precise and scalable resilience testing. 

AI and the 

Future of 

Failure 

Management 

AI is increasingly critical in predicting and managing 

failures, enhancing both proactive and reactive 

resilience strategies in hybrid cloud environments. 

AI will continue to play a pivotal role in 

dynamically balancing cloud and on-

premise resources for optimal performance 

and fault tolerance. 
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Over time, the fail-fast approach became an integral part 

of agile methodologies and DevOps practices, where rapid 

feedback loops are essential [21, 22]. As software systems 

grew more complex, the fail-small principle emerged as a 

complementary strategy. Fail-small emphasizes designing 

systems that allow for minor, contained failures that do not 

disrupt overall service. The introduction of cloud computing 

and containerization technologies further accelerated the 

adoption of fail-small architectures [23]. The ability to 

isolate and address failures at the microservice level has 

proven critical for maintaining system stability in high-

availability environments like cloud platforms and large-

scale web services [24]. 

 

Recent research has highlighted the challenges of 

implementing fail-fast, fail-small strategies in dynamic 

environments such as cloud-native architectures and AI-

driven systems [25]. One key challenge is ensuring that fail-

slow components, which degrade performance rather than 

triggering outright failures, are addressed effectively. 

Modern distributed systems require advanced programming 

support and monitoring tools to detect these gradual failures 

before they escalate [26]. Studies have emphasized the need 

for new protocols and development practices that incorporate 

fail-fast principles while accounting for fail-slow scenarios, 

ensuring consistent performance even as individual 

components degrade [27, 28].  

 

Today, the fail-fast, fail-small paradigm is deeply 

embedded in both software development and broader 

business strategies. The concept is no longer limited to 

technical fault tolerance but extends to product development 

and market strategies where quick iteration and early failure 

detection are valued. The approach has been particularly 

influential in the growth of startups and innovation 

ecosystems, where the ability to pivot and adapt quickly is 

crucial for success [29]. However, the principles remain most 

impactful in system design, where their application helps 

mitigate risks and ensure resilience in the face of increasing 

complexity and scale [30]. 

 

3. Recommendations 
3.1. Planning for Failure 

Designing systems to handle failures gracefully is 

critical for ensuring uninterrupted service delivery, especially 

in complex distributed systems. One primary strategy 

involves designing systems that degrade slowly rather than 

fail catastrophically [31]. This approach focuses on ensuring 

that when individual components within a system fail, the 

impact is localized, allowing the overall system to continue 

operating at a reduced capacity. For example, in distributed 

systems, components can be prioritized based on their 

importance, enabling the system to drop low-priority tasks in 

the event of resource constraints or component failures. Such 

prioritization ensures that core functionalities remain 

available, even during partial system failures [32]. Research 

into self-organizing task distribution methods, like the 

Artificial Hormone System (AHS), demonstrates that 

systems can automatically detect node failures and relocate 

tasks to healthier nodes. This offers a robust method for 

sustaining critical operations during failure scenarios [33, 

34]. 

 

In distributed systems, gradual degradation is often 

achieved by partitioning components into subsystems, each 

capable of independent operation. The structure of the 

system architecture plays a significant role in ensuring that 

degradation is managed effectively [36]. For instance, when 

subsystems are designed to function semi-independently, the 

failure of one subsystem does not directly impact others, 

thereby containing failures and minimizing system-wide 

disruption. This architectural approach is particularly 

beneficial in embedded systems, where resource constraints 

necessitate careful allocation and reallocation of tasks during 

failure events. A robust design for graceful degradation 

considers both the design phase—where the system structure 

is optimized for failure tolerance—and the operational 

phase—where behavioral optimization ensures minimal 

service disruption during runtime [36, 37].  

 

Distributed systems are inherently vulnerable to 

component failures due to their interconnected nature, 

making it crucial to build mechanisms for slow degradation 

rather than abrupt failure. In this context, self-adaptive 

mechanisms allow systems to dynamically adjust their 

service levels based on the current state of the network and 

the workload [38]. For example, modern distributed systems 

can autonomously decide when and how to degrade service 

levels, allowing non-critical tasks to be deprioritized in the 

event of resource scarcity or system stress. This adaptability 

is achieved through the continuous monitoring of system 

performance, coupled with intelligent decision-making 

algorithms that optimize the system's behavior under varying 

conditions. Research has shown that such systems can 

maintain critical operations while sacrificing less important 

services, thereby enhancing overall resilience [39, 40].  

 

In the case of cloud-based distributed systems, the 

ability to manage degradation is vital, given the scale and 

complexity of operations. Systems like those employed by 

Netflix offer a prime example of this approach. Netflix’s 

recommendation system is designed to handle failures by 

prioritizing content delivery over personalized 

recommendations. In practice, this means that even if the 

recommendation engine fails, users can still stream content 

without interruption. This prioritization is made possible 

through architectural decisions that isolate critical functions 

from non-critical ones, ensuring that the user experience is 

maintained even during partial system failures. Such design 

principles are essential for any service aiming to maintain 

high availability despite underlying system disruptions [41, 

42].  
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User experience remains a paramount concern even 

when systems are operating under degraded conditions. Slow 

degradation strategies ensure that essential services remain 

functional while secondary features are scaled back or 

temporarily disabled. In the context of online services, users 

often remain unaware of minor backend failures due to these 

carefully planned degradation strategies. For instance, during 

peak loads or minor outages, a streaming service might 

prioritize video playback quality over personalized 

recommendations, ensuring a seamless viewing experience. 

Such trade-offs are critical in maintaining customer 

satisfaction and preventing service abandonment during 

failure scenarios. Research has demonstrated that the 

seamless adaptation of service levels based on real-time 

workload analysis significantly enhances user experience 

during partial failures [43].  

 

The key to successful degradation management lies in 

the system’s ability to profile performance and predict the 

impacts of component failures. Systems that can model 

expected performance and compare it against real-time 

operations are better equipped to detect when degradation 

begins and adjust accordingly. For example, employing a 

Kolmogorov-Smirnov test to analyze system performance 

data allows for the early detection of deviations from 

expected behavior, facilitating timely interventions. This 

predictive capability ensures that minor issues do not escalate 

into major service disruptions, thereby preserving user 

satisfaction even in the face of component failures [37].  

 

3.2. Chaos Engineering and Resiliency    

Chaos engineering has emerged as a critical 

methodology for enhancing the resilience of complex 

software systems by intentionally introducing failures and 

observing the system’s responses. First pioneered by Netflix 

in 2008, this approach seeks to uncover weaknesses that may 

only manifest under specific, unforeseen conditions. By 

injecting controlled disruptions into production 

environments, chaos engineering enables engineers to test the 

limits of a system's fault tolerance, allowing organizations to 

understand better and address potential points of failure. The 

underlying philosophy is to "break things on purpose" in 

order to identify how a system can continue to function 

despite faults and even improve its overall robustness. For 

instance, recent developments have extended traditional 

chaos engineering to encompass the entire lifecycle of digital 

systems, including new frameworks like ChaosTwin that 

simulate failures in a digital twin environment to predict real-

world outcomes more effectively [44].  

 

At the core of chaos engineering lies the practice of 

subjecting systems to simulated failures—often through 

automated tools like Chaos Monkey, which randomly 

terminates instances in production to observe how the system 

copes. These experiments are designed to ensure that systems 

can recover autonomously without manual intervention. The 

objective is not simply to observe system failure but to gain 

insights into which components are most critical and how 

they interact under stress. For instance, modern chaos 

engineering approaches now incorporate both technical and 

business-level evaluations to provide a comprehensive view 

of system behavior. By combining fault injection with real-

time monitoring and data analysis, organizations can 

anticipate failure scenarios and develop more resilient 

configurations. The introduction of digital twins has further 

refined these processes, enabling non-disruptive testing of 

critical IT services in controlled virtual environments [44].  

 

The application of chaos engineering extends beyond 

traditional IT infrastructures to include domains such as 

Cyber Physical Systems (CPS) and blockchain technologies. 

For example, in the realm of CPS, chaos engineering 

methodologies have been employed to assess resilience 

against both natural and adversarial events, including system 

faults and cyberattacks. By using real-time chaos 

experiments, these systems can better adapt to unexpected 

disruptions, ensuring critical infrastructure remains 

operational during adverse conditions. Similarly, Ethereum 

blockchain clients have been stress-tested using chaos 

engineering principles to evaluate how they respond to 

system call errors, revealing key resilience characteristics 

that help developers mitigate vulnerabilities [45].  

 

The ultimate goal of chaos engineering is to build 

systems that remain functional despite the failure of 

individual components. This is achieved by iteratively 

testing, identifying weaknesses, and implementing strategies 

that enhance system reliability. For instance, recent 

innovations have focused on verifying transient behaviors in 

chaos experiments, which involve monitoring system 

responses as they transition between states after a failure. By 

developing tooling that supports the specification and 

verification of these behaviors, organizations can fine-tune 

their resilience strategies and better anticipate failure 

impacts. This proactive approach, which incorporates 

continuous testing and monitoring, ensures that even under 

extreme conditions, core functionalities remain operational 

and service degradation is minimized [46]. The integration of 

chaos engineering principles into system design represents a 

paradigm shift in how resilience is approached. Rather than 

waiting for failures to occur in real-world scenarios, 

organizations are empowered to proactively test, identify, 

and address vulnerabilities, thereby enhancing overall system 

robustness and reducing the risk of catastrophic failures.  

 

3.3. AI and the Future of Failure Management  

AI has become increasingly critical in identifying and 

managing soft points in software systems, particularly those 

prone to subtle, non-critical failures that can escalate over 

time. Modern AI-driven solutions offer proactive approaches 

to detecting these "soft failures" by leveraging machine 

learning algorithms capable of analyzing vast datasets and 
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identifying patterns indicative of potential failures before 

they manifest in severe disruptions. For instance, research 

has demonstrated that AI models can predict storage failures 

in data centers by analyzing SMART attributes, allowing for 

timely interventions that mitigate risks of service outages 

[47]. The integration of such AI-based proactive 

management frameworks enables organizations to transition 

from reactive to predictive maintenance, thereby enhancing 

system resilience.  

 

AI's integration into chaos engineering practices 

represents a significant advancement in the proactive 

management of software systems. Traditional chaos 

engineering involves inducing controlled failures to assess 

system robustness, but the introduction of AI enhances this 

process by optimizing the selection and execution of fault 

injection scenarios. AI algorithms can identify the most 

vulnerable components and create more targeted failure 

scenarios, leading to more efficient and insightful 

experiments. Moreover, recent developments in hybrid 

learning and digital twin technologies have allowed chaos 

engineering frameworks to incorporate AI-driven models, 

which simulate and analyze potential failures before they 

occur in real-world environments. This combination of chaos 

engineering with AI-driven anomaly detection frameworks, 

such as those applied in digital twins, offers a sophisticated 

approach to assessing resilience while minimizing the risks 

associated with live production testing [44].  

 

As organizations increasingly rely on cloud-based 

infrastructures, hybrid cloud solutions are emerging as a key 

strategy to enhance system robustness. Hybrid cloud 

architectures offer a balance between on-premise control and 

the scalability of cloud services, allowing organizations to 

optimize their resources based on workload criticality. AI 

plays a crucial role in this dynamic environment by 

predicting where and when resources should be allocated, 

thus preventing failures related to overloading or resource 

scarcity. For example, AI models can continuously monitor 

performance metrics across both cloud and on-premise 

systems, adjusting resource distribution in real time to 

maintain optimal operation. Research highlights that 

integrating AI-driven fault management within hybrid cloud 

environments not only improves resilience but also reduces 

operational costs by automating complex decision-making 

processes [48].  

 

The effective balance between cloud and on-premise 

resources is increasingly driven by AI-enhanced 

orchestration tools that dynamically assess system needs. AI 

algorithms enable fine-grained control over resource 

allocation, ensuring that mission-critical workloads receive 

priority while less essential processes are managed more 

flexibly. By continuously analyzing system performance and 

predicting potential bottlenecks or failures, AI systems can 

automatically redistribute workloads across hybrid 

environments to maximize efficiency and prevent 

disruptions. This approach is especially valuable in 

environments where consistent uptime is crucial, as it allows 

systems to maintain high availability even under stress. 

Research into AI-based soft failure detection in hybrid cloud 

systems emphasizes the role of machine learning models in 

identifying anomalies and adjusting resource distribution in 

real time, ultimately leading to more resilient infrastructures 

[11]. The convergence of AI, chaos engineering, and hybrid 

cloud solutions represents the future of failure management. 

By leveraging AI’s predictive capabilities and integrating 

them with advanced testing frameworks and cloud 

infrastructures, organizations can build highly adaptive and 

resilient systems capable of maintaining performance even in 

the face of unpredictable challenges.  

 

4. Conclusion  
 The design philosophy of creating systems that fail small 

and gracefully has become increasingly vital in modern 

software engineering. As systems grow in complexity and 

interconnectivity, the potential for cascading failures 

becomes more pronounced. By focusing on isolating failures 

and allowing them to occur in a controlled, contained 

manner, organizations can ensure that critical functionalities 

remain intact even when minor components fail. This 

approach not only mitigates the impact of failures on users 

but also enables systems to degrade gradually, preserving 

core operations while addressing faults. Designing for 

graceful failure allows systems to maintain continuity in 

service, preventing disruptions that could otherwise have 

significant financial and operational consequences.  

 Looking ahead, the role of artificial intelligence in 

enhancing system resiliency is poised to become even more 

prominent. AI-driven solutions are already proving essential 

in identifying weak points in software systems, predicting 

failures before they occur, and optimizing resource allocation 

in real time. By integrating AI into failure management 

strategies, organizations can move beyond reactive 

approaches to embrace predictive and proactive models that 

enhance overall system robustness. Moreover, AI’s 

integration into chaos engineering practices and hybrid cloud 

infrastructures promises a future where systems can adapt 

dynamically to unforeseen challenges. As these technologies 

continue to evolve, they will play a crucial role in ensuring 

that systems are not only resilient but also self-healing and 

adaptive, setting a new standard for how software systems 

are designed and maintained.  

Data Availability Statement   
 Data is available on request.  
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