
Lindenwood University Lindenwood University

Digital Commons@Lindenwood University Digital Commons@Lindenwood University

Faculty Scholarship Research and Scholarship

10-2024

Fail Fast, Fail Small: Designing Resilient Systems for the Future of Fail Fast, Fail Small: Designing Resilient Systems for the Future of

Software Engineering Software Engineering

Jill Willard

James Hutson

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/faculty-research-papers
https://digitalcommons.lindenwood.edu/rs
https://digitalcommons.lindenwood.edu/faculty-research-papers?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages

SSRG International Journal of Recent Engineering Science Volume 11 Issue 5, 51-58, Sep-Oct 2024

ISSN: 2349–7157 / https://doi.org/10.14445/23497157/IJRES-V11I5P106 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Fail Fast, Fail Small: Designing Resilient Systems for the

Future of Software Engineering

Jill Willard1, James Hutson2

1CTO XplorPay, Caledonia, IL, USA.

2Art History, AI, and Visual Culture, Lindenwood University, MO, USA.

1Corresponding Author : jill.c.willard@gmail.com

Received: 08 August 2024 Revised: 11 September 2024 Accepted: 26 September 2024 Published: 15 October 2024

Abstract - The principles of "fail fast, fail small" have emerged as critical in modern software and system design. By planning

for minor, manageable failures instead of catastrophic breakdowns, developers can ensure that systems degrade gracefully,

maintaining functionality even when encountering issues. This article delves into strategies for designing resilient systems,

beginning with the concept of slow degradation and distributed systems that prioritize core functions while allowing non-

critical components to fail without significant user impact. The Netflix recommendation engine serves as a prime example of a

system that continues to operate under failure conditions. Chaos engineering, a proactive methodology for stress-testing

system robustness, is explored with real-world examples of its implementation. As AI continues to evolve, its role in identifying

weaknesses and enhancing system resilience is becoming indispensable. The article highlights AI's potential to push the

boundaries of chaos engineering and discusses the growing importance of hybrid cloud solutions, balancing cloud and on-

premise resources for optimized resilience. Future trends emphasize the need for service scalability based on business-critical

classifications, allowing systems to prioritize resources effectively. Designing systems to "fail fast, fail small" is not only about

mitigating risk but also about building adaptive, future-proof architectures that anticipate the unknown.

Keywords - Fail fast, Chaos engineering, System resilience, AI-driven robustness, Hybrid cloud solutions.

1. Introduction
The "fail-fast, fail-small" design philosophy has been

used broadly in strategies for innovative thinking from

business management to ecology. However, it here will be

recognized as crucial in building resilient and adaptable

software systems [1-4]. The approach prioritizes the swift

identification and containment of failures to prevent

widespread system disruptions. Through the detection of

issues early and confining them to small, isolated

components, systems can continue to operate effectively

even under duress, minimizing the impact on overall

performance [5]. The concept draws from distributed systems

design, where failures are expected and planned for, enabling

the system to degrade gradually rather than collapse entirely.

Such designs focus on isolating the points of failure and

building redundancies that preserve essential functionalities

[6]. The principle is vital in safety-critical environments

where software-hardware interaction failures can lead to

catastrophic outcomes. Researchers have emphasized that

proactive fault analysis and the use of fault-tolerant

architectural patterns are key to designing systems capable of

managing such failures [7-9]. In practical applications, this

approach is exemplified by systems like the Netflix

recommendation engine, which continues to provide a

seamless user experience even when parts of the system fail

[10]. The architecture is designed to prioritize core

functionalities, such as content streaming, over less critical

services like recommendations, allowing the platform to

remain operational despite internal failures. Through the

allotment of fail-fast and fail-small principles, designers can

create systems that perform robustly under stress, with

controlled degradation that users might not even notice.

Moreover, the integration of fault-tolerant mechanisms

within software design—especially in distributed, cyber-

physical systems—supports a more adaptive and resilient

operational framework, minimizing the need for costly

interventions or shutdowns [11].

Designing for small, manageable failures is a key

strategy in modern software development, especially as

systems grow in complexity and interdependence. The fail-

small principle emphasizes that by isolating faults and

managing them at a micro-level, systems can maintain core

functionality even in adverse conditions. The approach is

essential in preventing minor issues from escalating into

catastrophic system-wide failures [12]. For example, research

by Geisbush and Ariaratnam [13] highlights that integrating

reliability-focused designs early in the development cycle

http://www.internationaljournalssrg.org/

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

52

significantly reduces the risk of costly, large-scale

breakdowns later. By anticipating potential faults and

segmenting critical functions, systems can degrade gracefully

rather than fail abruptly. The gradual degradation is

especially relevant in cyber-physical systems where both

hardware and software failures need to be considered

together, as opposed to in isolation [14]. From a practical

perspective, designing for manageable failures aligns with

the broader goal of reducing operational risks while

optimizing system performance. Implementing fault-tolerant

architectures and redundancy mechanisms ensures that even

if parts of a system fail, essential services continue to

function, thus preserving user experience and operational

integrity [15]. Furthermore, research suggests that early-stage

prediction models that consider both hardware and software

interactions are vital in designing systems capable of

handling such small-scale failures effectively [16]. Adopting

these models not only aids in fault management but also

contributes to a proactive maintenance strategy, ultimately

leading to more resilient and reliable systems. The emphasis

on localized fault management reflects a shift in design

philosophy, where systems are built with the expectation of

failure and equipped to handle it gracefully.

Given the increasing complexity and interconnectivity of

modern software systems, the need for resilient designs that

incorporate small, manageable failures is more critical than

ever. The principles discussed in this introduction highlight

how proactive strategies, such as fault tolerance, early-stage

reliability modeling, and distributed system architectures,

offer significant advantages in mitigating risks associated

with unexpected failures. By focusing on gradual system

degradation and maintaining core functionalities even when

peripheral components fail, systems can deliver consistent

user experiences and avoid catastrophic breakdowns.

Building on these foundational insights, this study will

explore recommendations for future development by

examining three critical areas (Table 1). First, the strategies

for planning failures within distributed systems will be

discussed, highlighting how gradual degradation and robust

design choices, like those implemented in Netflix’s

recommendation system, ensure seamless user experiences.

Second, the principles of chaos engineering will be explored

as a method for testing and reinforcing system resilience

through controlled failure scenarios. Finally, the role of AI in

future failure management will be assessed, focusing on its

ability to detect vulnerabilities, enhance chaos engineering

practices, and optimize hybrid cloud solutions that balance

cloud and on-premise resources. These sections will provide

a comprehensive set of recommendations to guide the

development of next-generation systems that are resilient,

adaptable, and capable of thriving in failure-prone

environments.

2. Literature Review
The "fail-fast, fail-small" concept in software

engineering has its roots in the broader discipline of fault-

tolerant system design. Originally, fault tolerance focused on

ensuring that systems could continue operating despite the

presence of component failures, primarily through

redundancy and error detection mechanisms [17]. In the

1980s and 1990s, software development began incorporating

these principles with an emphasis on fast detection and

resolution of faults at early stages [18]. Early research in this

area primarily addressed large, monolithic systems where

failures could cascade, leading to catastrophic outcomes [19].

The introduction of distributed systems and microservices in

the 2000s shifted the focus towards isolating failures within

smaller, self-contained components. This evolution allowed

systems to limit the impact of failures and continue providing

essential services even when individual parts failed [20].

Table 1. Designing resilient systems

Key Area Summary Future Trends

Fail-Fast,

Fail-Small

Concept

Fail-fast and fail-small strategies focus on quick

detection and containment of failures, isolating faults

to prevent larger disruptions.

AI integration will drive more

sophisticated failure management

strategies that anticipate and mitigate

issues before they occur.

Planning for

Failure

Designing systems that degrade slowly ensures core

functions remain operational even during partial

failures; distributed systems and prioritization are key

strategies.

Systems will increasingly rely on hybrid

architectures and prioritize user experience

during degraded operations.

Chaos

Engineering

and

Resiliency

Chaos engineering involves intentionally inducing

failures to test system resilience; AI enhances these

practices by optimizing fault scenarios and reducing

risks.

Further development of AI-driven chaos

engineering frameworks will enable more

precise and scalable resilience testing.

AI and the

Future of

Failure

Management

AI is increasingly critical in predicting and managing

failures, enhancing both proactive and reactive

resilience strategies in hybrid cloud environments.

AI will continue to play a pivotal role in

dynamically balancing cloud and on-

premise resources for optimal performance

and fault tolerance.

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

53

Over time, the fail-fast approach became an integral part

of agile methodologies and DevOps practices, where rapid

feedback loops are essential [21, 22]. As software systems

grew more complex, the fail-small principle emerged as a

complementary strategy. Fail-small emphasizes designing

systems that allow for minor, contained failures that do not

disrupt overall service. The introduction of cloud computing

and containerization technologies further accelerated the

adoption of fail-small architectures [23]. The ability to

isolate and address failures at the microservice level has

proven critical for maintaining system stability in high-

availability environments like cloud platforms and large-

scale web services [24].

Recent research has highlighted the challenges of

implementing fail-fast, fail-small strategies in dynamic

environments such as cloud-native architectures and AI-

driven systems [25]. One key challenge is ensuring that fail-

slow components, which degrade performance rather than

triggering outright failures, are addressed effectively.

Modern distributed systems require advanced programming

support and monitoring tools to detect these gradual failures

before they escalate [26]. Studies have emphasized the need

for new protocols and development practices that incorporate

fail-fast principles while accounting for fail-slow scenarios,

ensuring consistent performance even as individual

components degrade [27, 28].

Today, the fail-fast, fail-small paradigm is deeply

embedded in both software development and broader

business strategies. The concept is no longer limited to

technical fault tolerance but extends to product development

and market strategies where quick iteration and early failure

detection are valued. The approach has been particularly

influential in the growth of startups and innovation

ecosystems, where the ability to pivot and adapt quickly is

crucial for success [29]. However, the principles remain most

impactful in system design, where their application helps

mitigate risks and ensure resilience in the face of increasing

complexity and scale [30].

3. Recommendations
3.1. Planning for Failure

Designing systems to handle failures gracefully is

critical for ensuring uninterrupted service delivery, especially

in complex distributed systems. One primary strategy

involves designing systems that degrade slowly rather than

fail catastrophically [31]. This approach focuses on ensuring

that when individual components within a system fail, the

impact is localized, allowing the overall system to continue

operating at a reduced capacity. For example, in distributed

systems, components can be prioritized based on their

importance, enabling the system to drop low-priority tasks in

the event of resource constraints or component failures. Such

prioritization ensures that core functionalities remain

available, even during partial system failures [32]. Research

into self-organizing task distribution methods, like the

Artificial Hormone System (AHS), demonstrates that

systems can automatically detect node failures and relocate

tasks to healthier nodes. This offers a robust method for

sustaining critical operations during failure scenarios [33,

34].

In distributed systems, gradual degradation is often

achieved by partitioning components into subsystems, each

capable of independent operation. The structure of the

system architecture plays a significant role in ensuring that

degradation is managed effectively [36]. For instance, when

subsystems are designed to function semi-independently, the

failure of one subsystem does not directly impact others,

thereby containing failures and minimizing system-wide

disruption. This architectural approach is particularly

beneficial in embedded systems, where resource constraints

necessitate careful allocation and reallocation of tasks during

failure events. A robust design for graceful degradation

considers both the design phase—where the system structure

is optimized for failure tolerance—and the operational

phase—where behavioral optimization ensures minimal

service disruption during runtime [36, 37].

Distributed systems are inherently vulnerable to

component failures due to their interconnected nature,

making it crucial to build mechanisms for slow degradation

rather than abrupt failure. In this context, self-adaptive

mechanisms allow systems to dynamically adjust their

service levels based on the current state of the network and

the workload [38]. For example, modern distributed systems

can autonomously decide when and how to degrade service

levels, allowing non-critical tasks to be deprioritized in the

event of resource scarcity or system stress. This adaptability

is achieved through the continuous monitoring of system

performance, coupled with intelligent decision-making

algorithms that optimize the system's behavior under varying

conditions. Research has shown that such systems can

maintain critical operations while sacrificing less important

services, thereby enhancing overall resilience [39, 40].

In the case of cloud-based distributed systems, the

ability to manage degradation is vital, given the scale and

complexity of operations. Systems like those employed by

Netflix offer a prime example of this approach. Netflix’s

recommendation system is designed to handle failures by

prioritizing content delivery over personalized

recommendations. In practice, this means that even if the

recommendation engine fails, users can still stream content

without interruption. This prioritization is made possible

through architectural decisions that isolate critical functions

from non-critical ones, ensuring that the user experience is

maintained even during partial system failures. Such design

principles are essential for any service aiming to maintain

high availability despite underlying system disruptions [41,

42].

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

54

User experience remains a paramount concern even

when systems are operating under degraded conditions. Slow

degradation strategies ensure that essential services remain

functional while secondary features are scaled back or

temporarily disabled. In the context of online services, users

often remain unaware of minor backend failures due to these

carefully planned degradation strategies. For instance, during

peak loads or minor outages, a streaming service might

prioritize video playback quality over personalized

recommendations, ensuring a seamless viewing experience.

Such trade-offs are critical in maintaining customer

satisfaction and preventing service abandonment during

failure scenarios. Research has demonstrated that the

seamless adaptation of service levels based on real-time

workload analysis significantly enhances user experience

during partial failures [43].

The key to successful degradation management lies in

the system’s ability to profile performance and predict the

impacts of component failures. Systems that can model

expected performance and compare it against real-time

operations are better equipped to detect when degradation

begins and adjust accordingly. For example, employing a

Kolmogorov-Smirnov test to analyze system performance

data allows for the early detection of deviations from

expected behavior, facilitating timely interventions. This

predictive capability ensures that minor issues do not escalate

into major service disruptions, thereby preserving user

satisfaction even in the face of component failures [37].

3.2. Chaos Engineering and Resiliency

Chaos engineering has emerged as a critical

methodology for enhancing the resilience of complex

software systems by intentionally introducing failures and

observing the system’s responses. First pioneered by Netflix

in 2008, this approach seeks to uncover weaknesses that may

only manifest under specific, unforeseen conditions. By

injecting controlled disruptions into production

environments, chaos engineering enables engineers to test the

limits of a system's fault tolerance, allowing organizations to

understand better and address potential points of failure. The

underlying philosophy is to "break things on purpose" in

order to identify how a system can continue to function

despite faults and even improve its overall robustness. For

instance, recent developments have extended traditional

chaos engineering to encompass the entire lifecycle of digital

systems, including new frameworks like ChaosTwin that

simulate failures in a digital twin environment to predict real-

world outcomes more effectively [44].

At the core of chaos engineering lies the practice of

subjecting systems to simulated failures—often through

automated tools like Chaos Monkey, which randomly

terminates instances in production to observe how the system

copes. These experiments are designed to ensure that systems

can recover autonomously without manual intervention. The

objective is not simply to observe system failure but to gain

insights into which components are most critical and how

they interact under stress. For instance, modern chaos

engineering approaches now incorporate both technical and

business-level evaluations to provide a comprehensive view

of system behavior. By combining fault injection with real-

time monitoring and data analysis, organizations can

anticipate failure scenarios and develop more resilient

configurations. The introduction of digital twins has further

refined these processes, enabling non-disruptive testing of

critical IT services in controlled virtual environments [44].

The application of chaos engineering extends beyond

traditional IT infrastructures to include domains such as

Cyber Physical Systems (CPS) and blockchain technologies.

For example, in the realm of CPS, chaos engineering

methodologies have been employed to assess resilience

against both natural and adversarial events, including system

faults and cyberattacks. By using real-time chaos

experiments, these systems can better adapt to unexpected

disruptions, ensuring critical infrastructure remains

operational during adverse conditions. Similarly, Ethereum

blockchain clients have been stress-tested using chaos

engineering principles to evaluate how they respond to

system call errors, revealing key resilience characteristics

that help developers mitigate vulnerabilities [45].

The ultimate goal of chaos engineering is to build

systems that remain functional despite the failure of

individual components. This is achieved by iteratively

testing, identifying weaknesses, and implementing strategies

that enhance system reliability. For instance, recent

innovations have focused on verifying transient behaviors in

chaos experiments, which involve monitoring system

responses as they transition between states after a failure. By

developing tooling that supports the specification and

verification of these behaviors, organizations can fine-tune

their resilience strategies and better anticipate failure

impacts. This proactive approach, which incorporates

continuous testing and monitoring, ensures that even under

extreme conditions, core functionalities remain operational

and service degradation is minimized [46]. The integration of

chaos engineering principles into system design represents a

paradigm shift in how resilience is approached. Rather than

waiting for failures to occur in real-world scenarios,

organizations are empowered to proactively test, identify,

and address vulnerabilities, thereby enhancing overall system

robustness and reducing the risk of catastrophic failures.

3.3. AI and the Future of Failure Management

AI has become increasingly critical in identifying and

managing soft points in software systems, particularly those

prone to subtle, non-critical failures that can escalate over

time. Modern AI-driven solutions offer proactive approaches

to detecting these "soft failures" by leveraging machine

learning algorithms capable of analyzing vast datasets and

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

55

identifying patterns indicative of potential failures before

they manifest in severe disruptions. For instance, research

has demonstrated that AI models can predict storage failures

in data centers by analyzing SMART attributes, allowing for

timely interventions that mitigate risks of service outages

[47]. The integration of such AI-based proactive

management frameworks enables organizations to transition

from reactive to predictive maintenance, thereby enhancing

system resilience.

AI's integration into chaos engineering practices

represents a significant advancement in the proactive

management of software systems. Traditional chaos

engineering involves inducing controlled failures to assess

system robustness, but the introduction of AI enhances this

process by optimizing the selection and execution of fault

injection scenarios. AI algorithms can identify the most

vulnerable components and create more targeted failure

scenarios, leading to more efficient and insightful

experiments. Moreover, recent developments in hybrid

learning and digital twin technologies have allowed chaos

engineering frameworks to incorporate AI-driven models,

which simulate and analyze potential failures before they

occur in real-world environments. This combination of chaos

engineering with AI-driven anomaly detection frameworks,

such as those applied in digital twins, offers a sophisticated

approach to assessing resilience while minimizing the risks

associated with live production testing [44].

As organizations increasingly rely on cloud-based

infrastructures, hybrid cloud solutions are emerging as a key

strategy to enhance system robustness. Hybrid cloud

architectures offer a balance between on-premise control and

the scalability of cloud services, allowing organizations to

optimize their resources based on workload criticality. AI

plays a crucial role in this dynamic environment by

predicting where and when resources should be allocated,

thus preventing failures related to overloading or resource

scarcity. For example, AI models can continuously monitor

performance metrics across both cloud and on-premise

systems, adjusting resource distribution in real time to

maintain optimal operation. Research highlights that

integrating AI-driven fault management within hybrid cloud

environments not only improves resilience but also reduces

operational costs by automating complex decision-making

processes [48].

The effective balance between cloud and on-premise

resources is increasingly driven by AI-enhanced

orchestration tools that dynamically assess system needs. AI

algorithms enable fine-grained control over resource

allocation, ensuring that mission-critical workloads receive

priority while less essential processes are managed more

flexibly. By continuously analyzing system performance and

predicting potential bottlenecks or failures, AI systems can

automatically redistribute workloads across hybrid

environments to maximize efficiency and prevent

disruptions. This approach is especially valuable in

environments where consistent uptime is crucial, as it allows

systems to maintain high availability even under stress.

Research into AI-based soft failure detection in hybrid cloud

systems emphasizes the role of machine learning models in

identifying anomalies and adjusting resource distribution in

real time, ultimately leading to more resilient infrastructures

[11]. The convergence of AI, chaos engineering, and hybrid

cloud solutions represents the future of failure management.

By leveraging AI’s predictive capabilities and integrating

them with advanced testing frameworks and cloud

infrastructures, organizations can build highly adaptive and

resilient systems capable of maintaining performance even in

the face of unpredictable challenges.

4. Conclusion
 The design philosophy of creating systems that fail small

and gracefully has become increasingly vital in modern

software engineering. As systems grow in complexity and

interconnectivity, the potential for cascading failures

becomes more pronounced. By focusing on isolating failures

and allowing them to occur in a controlled, contained

manner, organizations can ensure that critical functionalities

remain intact even when minor components fail. This

approach not only mitigates the impact of failures on users

but also enables systems to degrade gradually, preserving

core operations while addressing faults. Designing for

graceful failure allows systems to maintain continuity in

service, preventing disruptions that could otherwise have

significant financial and operational consequences.

 Looking ahead, the role of artificial intelligence in

enhancing system resiliency is poised to become even more

prominent. AI-driven solutions are already proving essential

in identifying weak points in software systems, predicting

failures before they occur, and optimizing resource allocation

in real time. By integrating AI into failure management

strategies, organizations can move beyond reactive

approaches to embrace predictive and proactive models that

enhance overall system robustness. Moreover, AI’s

integration into chaos engineering practices and hybrid cloud

infrastructures promises a future where systems can adapt

dynamically to unforeseen challenges. As these technologies

continue to evolve, they will play a crucial role in ensuring

that systems are not only resilient but also self-healing and

adaptive, setting a new standard for how software systems

are designed and maintained.

Data Availability Statement
 Data is available on request.

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

56

References
[1] Boehmer, Annette Isabel, and Lindemann, Udo, “Open Innovation Ecosystem: Towards Collaborative Innovation,” In DS 80-8

Proceedings of the 20th International Conference on Engineering Design (ICED 15), Milan, Italy, vol. 8, pp. 31-40, 2015. [Google

Scholar] [Publisher Link]

[2] Vinod Khosla, “The Innovator’s Ecosystem,” Khoslaventures, pp. 1-27, 2011. [Google Scholar] [Publisher Link]

[3] William S. Seidel, Licensing Myths & Mastery: Why Most Ideas Don’t Work and What to Do About It, Business Expert Press, 2017.

[Google Scholar] [Publisher Link]

[4] John Thomas, and Pam Mantri, “Axiomatic Cloud Computing Architectural Design,” Design Engineering and Science, Springer, Cham,

pp. 605-657, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Nicholas Jeffrey, Qing Tan, and José R. Villar, “A Review of Anomaly Detection Strategies to Detect Threats to Cyber-Physical

Systems,” Electronics, vol. 12, no. 15, PP. 1-34, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Aarti Dawra et al., “12 Enhancing Business Development, Ethics, and Governance with the Adoption of Distributed Systems,” Meta

Heuristic Algorithms for Advanced Distributed Systems, vol. 193-209, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Francisco Henrique Cerdeira Ferreira et al., “A Framework for The Design of Fault-Tolerant Systems-Of-Systems,” Journal of Systems

and Software, vol. 211, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Dathar Hasan, and Subhi R. M. Zeebaree, “Proactive Fault Tolerance in Distributed Cloud Systems: A Review of Predictive and

Preventive Techniques,” Indonesian Journal of Computer Science, vol. 13, no. 2, PP. 1731- 1748, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[9] Federico Reghenzani, Zhishan Guo, and William Fornaciari, “Software Fault Tolerance in Real-Time Systems: Identifying the Future

Research Questions,” ACM Computing Surveys, vol. 55, no. 14s, pp. 1-30, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Kshitij Kumar, Dilemma of Speed Vs. Scale in Software System Development Best Practices from Industry Leaders, Doctoral

Dissertation, Massachusetts Institute of Technology, pp. 90-93, 2017. [Google Scholar] [Publisher Link]

[11] Xiaoliang Chen et al., “Automating Optical Network Fault Management with Machine Learning,” In Proceedings IEEE

Communications Magazine, vol. 60, no. 12, pp. 88-94, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] S. Naghshbandi, E. Varga, and T. Dolan, Review of Emergent Behaviors of Systems Comparable to Infrastructure Systems and Analysis

Approaches That Could Be Applied to Infrastructure Systems, University College London, Gower Street, London, pp. 1-64, 2020.

[Google Scholar] [Publisher Link]

[13] James Geisbush, and Samuel T. Ariaratnam, “Reliability Centered Maintenance (RCM): Literature Review of Current Industry State of

Practice,” Journal of Quality in Maintenance Engineering, vol. 29, no. 2, pp. 313-337, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[14] Jiusi Zhang et al., “Prognostics for the Sustainability of Industrial Cyber-Physical Systems: From an Artificial Intelligence Perspective,”

In Proceedings IEEE Transactions on Industrial Cyber-Physical Systems, vol. 2, pp. 495-507, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Alok Mishra, and Ziadoon Otaiwi, “Devops and Software Quality: A Systematic Mapping,” Computer Science Review, vol. 38, pp. 1-

14, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Fatemeh Mostafavi et al., “An Interactive Assessment Framework for Residential Space Layouts Using Pix2pix Predictive Model at The

Early-Stage Building Design,” Smart and Sustainable Built Environment, vol. 13, no. 4, pp. 809-827, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Israel Koren, and C. Mani Krishna, Fault-Tolerant Systems, Morgan Kaufmann, Elsevier Science, pp. 1-378, 2007. [Google Scholar]

[Publisher Link]

[18] Rolf Isermann, “Process Fault Detection Based on Modeling and Estimation Methods - A Survey,” Automatica, vol. 20, no. 4, pp. 387-

404, 1984. [CrossRef] [Google Scholar] [Publisher Link]

[19] Qiuping Yi et al., “Explaining Software Failures by Cascade Fault Localization,” In Proceedings ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 20, no. 3, pp. 1-28, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[20] Pat Helland, “Fail-Fast Is Failing... Fast! Changes In Compute Environments are Placing Pressure on Tried-And-True Distributed-

Systems Solutions,” Queue, vol. 19, no. 1, pp. 5-15, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Kati Kuusinen et al., “A Large Agile Organization on its Journey Towards Devops,” 2018 44th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), Prague, Czech Republic, pp. 60-63, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[22] Ravi Teja Yarlagadda, “Devops and its Practices,” International Journal of Creative Research Thoughts (IJCRT), vol. 9, no. 3, pp. 111-

119, 2021. [Google Scholar] [Publisher Link]

[23] Yuri Bobbert, and Maria Chtepen, Research Findings in the Domain of CI/CD and DevOps on Security Compliance, Strategic

Approaches to Digital Platform Security Assurance, pp. 286-307, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?cluster=17178557605249907278&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?cluster=17178557605249907278&hl=en&as_sdt=0,5
https://www.designsociety.org/publication/37905/OPEN+INNOVATION+ECOSYSTEM%3A+TOWARDS+COLLABORATIVE+INNOVATION
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Innovator%E2%80%99s+Ecosystem%2C%E2%80%9D+Khoslaventures&btnG=
https://www.khoslaventures.com/wp-content/uploads/InnovatorsEcosystem_12_19_111.pdf
https://scholar.google.com/scholar?cluster=13800522078699123177&hl=en&as_sdt=0,5
https://www.businessexpertpress.com/books/licensing-myths-mastery-why-most-ideas-dont-work-and-what-to-do-about-it/
https://doi.org/10.1007/978-3-030-49232-8_22
https://scholar.google.com/scholar?cluster=11750880019137274223&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-030-49232-8_22
https://doi.org/10.3390/electronics12153283
https://scholar.google.com/scholar?cluster=1560804790020519797&hl=en&as_sdt=0,5
https://www.mdpi.com/2079-9292/12/15/3283
https://doi.org/10.1002/9781394188093.ch12
https://scholar.google.com/scholar?cluster=3434064008209881033&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/10.1002/9781394188093.ch12
https://doi.org/10.1016/j.jss.2024.112010
https://scholar.google.com/scholar?cluster=7637994416442011021&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0164121224000530?via%3Dihub
https://doi.org/10.33022/ijcs.v13i2.3808
https://scholar.google.com/scholar?cluster=15816190384874641462&hl=en&as_sdt=0,5
http://ijcs.net/ijcs/index.php/ijcs/article/view/3808
https://doi.org/10.1145/3589950
https://scholar.google.com/scholar?cluster=12799293833309416361&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3589950
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dilemma+of+speed+vs.+scale+in+software+system+development+best+practices+from+industry+leaders+&btnG=
https://dspace.mit.edu/handle/1721.1/110137
https://doi.org/10.1109/MCOM.003.2200110
https://scholar.google.com/scholar?cluster=10990731912098971978&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9869798
https://scholar.google.com/scholar?cluster=9908999304813922873&hl=en&as_sdt=0,5
https://discovery.ucl.ac.uk/id/eprint/10136532/
https://doi.org/10.1108/JQME-02-2021-0018
https://scholar.google.com/scholar?cluster=11393271100588118129&hl=en&as_sdt=0,5
https://www.emerald.com/insight/content/doi/10.1108/JQME-02-2021-0018/full/html
https://www.emerald.com/insight/content/doi/10.1108/JQME-02-2021-0018/full/html
https://doi.org/10.1109/TICPS.2024.3433492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prognostics+for+the+Sustainability+of+Industrial+Cyber-Physical+Systems%3A+From+an+Artificial+Intelligence+Perspective&btnG=
https://ieeexplore.ieee.org/document/10609542
https://doi.org/10.1016/j.cosrev.2020.100308
https://scholar.google.com/scholar?cluster=7992422988748698290&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/pii/S1574013720304081?via%3Dihub
https://doi.org/10.1108/SASBE-07-2022-0152
https://scholar.google.com/scholar?cluster=5206368312279058249&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?cluster=5206368312279058249&hl=en&as_sdt=0,5
https://www.emerald.com/insight/content/doi/10.1108/SASBE-07-2022-0152/full/html
https://scholar.google.com/scholar?cluster=17956102044150361959&hl=en&as_sdt=0,5#d=gs_cit&t=1728388682954&u=%2Fscholar%3Fq%3Dinfo%3AZ28_dKzjMPkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26scfhb%3D1%26hl%3Den
https://www.google.co.in/books/edition/_/mipjrgEACAAJ?hl=en&sa=X&ved=2ahUKEwirw5b93YCJAxUd3jgGHRgFHBEQ8fIDegQIDxAE%5d
https://doi.org/10.1016/0005-1098(84)90098-0
https://scholar.google.com/scholar?cluster=10375886963347162488&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/0005109884900980?via%3Dihub
https://doi.org/10.1145/2738038
https://scholar.google.com/scholar?cluster=15847620621285091795&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/2738038
https://doi.org/10.1145/3454122.3458812
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fail-fast+Is+Failing...+Fast%21+Changes+in+compute+environments+are+placing+pressure+on+tried-and-true+distributed-systems+solutions.+&btnG=
https://dl.acm.org/doi/10.1145/3454122.3458812
https://doi.org/10.1109/SEAA.2018.00019
https://scholar.google.com/scholar?cluster=17078239832310579019&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/8498186
https://ieeexplore.ieee.org/document/8498186
https://scholar.google.com/scholar?cluster=2157275406863402737&hl=en&as_sdt=0,5
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3798877
https://doi.org/10.4018/978-1-7998-7367-9.ch008
https://scholar.google.com/scholar?cluster=18050071530765716384&hl=en&as_sdt=0,5
https://www.igi-global.com/chapter/research-findings-in-the-domain-of-cicd-and-devops-on-security-compliance/278810

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

57

[24] Andrew Yoo et al., “Fail-Slow Fault Tolerance Needs Programming Support,” HotOS '21: Proceedings of the Workshop on Hot Topics

in Operating Systems, Ann Arbor Michigan, pp. 228-235, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[25] Shuiguang Deng et al., “Cloud-Native Computing: A Survey from the Perspective of Services,” Proceedings of the IEEE, vol. 112, no.

1, pp. 12-46, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[26] Bhavana Chaurasia, Anshul Verma, and Pradeepika Verma, “An In-Depth and Insightful Exploration of Failure Detection in Distributed

Systems,” Computer Networks, vol. 247, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[27] Kjell Jørgen Hole, “Tutorial on Systems with Antifragility to Downtime,” Computing, vol. 104, no. 1, pp. 73-93, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[28] Kieron J. Meagher, Arlene Wong, and Klaus G. Zauner, “A Competitive Analysis of Fail Fast: Shakeout and Uncertainty About

Consumer Tastes,” Journal of Economic Behavior and Organization, vol. 177, pp. 589-600, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[29] Olorunyomi Stephen Joel et al., “Navigating the Digital Transformation Journey: Strategies for Startup Growth and Innovation in the

Digital Era,” International Journal of Management and Entrepreneurship Research, vol. 6, no. 3, pp. 697-706, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[30] Christoph A. Thieme et al., “Incorporating Software Failure in Risk Analysis–Part 1: Software Functional Failure Mode Classification,”

Reliability Engineering and System Safety, vol. 197, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[31] Tarannom Parhizkar et al., “Degradation and Failure Mechanisms of Complex Systems: Principles,” Advances in Reliability, Failure

and Risk Analysis, pp. 1-50, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[32] Aleksander Sokolov, Andrey Larionov, and Amir Mukhtarov, “Distributed System for Scientific and Engineering Computations with

Problem Containerization and Prioritization,” International Conference on Distributed Computer and Communication Networks,

Moscow, Russia, pp. 68-82, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[33] Philipp Homann et al., “Evaluation of Trust Metrics in an Artificial Hormone System,” 2024 IEEE 27th International Symposium on

Real-Time Distributed Computing (ISORC), Tunis, Tunisia, pp. 1-12, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[34] Eric Hutter, and Uwe Brinkschulte, “Handling Assignment Priorities to Degrade Systems in Self-Organizing Task Distribution,” 2021

IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC), Daegu, Korea (South), pp. 132-140, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[35] Dennis M. Buede, William D. Miller, The Engineering Design of Systems: Models and Methods, John Wiley and Sons, pp. 1-464, 2024

[Google Scholar] [Publisher Link]

[36] R. Shaw, and B. Butler, “Initial Accident Scenario Analysis in Support of a Preliminary DEMO Tritium Plant Design,” Fusion

Engineering and Design, vol. 189, pp. 1-19, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[37] C.P. Shelton, P. Koopman, and W. Nace, “A Framework for Scalable Analysis and Design of System-Wide Graceful Degradation in

Distributed Embedded Systems,” Proceedings of the Eighth International Workshop on Object-Oriented Real-Time Dependable

Systems, 2003. (WORDS 2003), Guadalajara, Mexico, pp. 156-163, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[38] Danny Weyns et al.., “Self-Adaptation in Industry: A Survey,” ACM Transactions on Autonomous and Adaptive Systems, vol. 18, no. 2,

pp. 1-44, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[39] Tomas KLIESTIK et al., “Artificial Intelligence-Based Predictive Maintenance, Time-Sensitive Networking, and Big Data-Driven

Algorithmic Decision-Making in the Economics of Industrial Internet of Things,” Oeconomia Copernicana, vol. 14, no. 4, pp. 1097-

1138, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[40] Jeremy Philippe et al., “Self‐Adaptation of Service Level in Distributed Systems,” Software: Practice and Experience, vol. 40, no. 3, pp.

259-283, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[41] Dinko Omeragić et al., “The Employment of a Machine Learning-Based Recommendation System to Maximize Netflix User

Satisfaction,” International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies, pp. 300-328, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[42] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “A Design Methodology for Distributed Control Systems to Optimize Performance in

The Presence of Time Delays,” Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), Chicago, IL,

USA, vol. 3, pp. 1959-1964, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[43] Ian Riley, and Rose Gamble, “Using System Profiling for Effective Degradation Detection,” 2018 IEEE International Conference on

Autonomic Computing (ICAC), Trento, Italy, pp. 169-174, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[44] Filippo Poltronieri, Mauro Tortonesi, and Cesare Stefanelli, “Chaostwin: A Chaos Engineering and Digital Twin Approach for The

Design of Resilient IT Services,” 2021 17th International Conference on Network and Service Management (CNSM), Izmir, Turkey, pp.

234-238, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[45] Charalambos Konstantinou et al., “Chaos Engineering for Enhanced Resilience of Cyber-Physical Systems,” 2021 Resilience Week

(RWS), Salt Lake City, UT, USA, pp. 1-10, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3458336.3465299
https://scholar.google.com/scholar?cluster=7068058454237606499&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3458336.3465299
https://doi.org/10.1109/JPROC.2024.3353855
https://scholar.google.com/scholar?cluster=10150372149458214341&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/10433234
https://doi.org/10.1016/j.comnet.2024.110432
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+in-depth+and+insightful+exploration+of+failure+detection+in+distributed+systems&btnG=
https://linkinghub.elsevier.com/retrieve/pii/S1389128624002640
https://doi.org/10.1007/s00607-020-00895-6
https://scholar.google.com/scholar?cluster=12375992270297889073&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s00607-020-00895-6
https://doi.org/10.1016/j.jebo.2020.06.033
https://scholar.google.com/scholar?cluster=9011417675649445930&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0167268120302225?via%3Dihub
https://doi.org/10.51594/ijmer.v6i3.881
https://scholar.google.com/scholar?cluster=10761385940888549202&hl=en&as_sdt=0,5
https://fepbl.com/index.php/ijmer/article/view/881
https://doi.org/10.1016/j.ress.2020.106803
https://scholar.google.com/scholar?cluster=10028620268892254242&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0951832018307166?via%3Dihub
https://doi.org/10.1007/978-981-19-9909-3_1
https://scholar.google.com/scholar?cluster=18358767297063604449&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-981-19-9909-3_1
https://doi.org/10.1007/978-3-031-50482-2_6
https://scholar.google.com/scholar?cluster=1714032596012087417&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-031-50482-2_6
https://doi.org/10.1109/ISORC61049.2024.10551339
https://scholar.google.com/scholar?cluster=15094777987770233634&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/10551339
https://doi.org/10.1109/ISORC52013.2021.00027
https://scholar.google.com/scholar?cluster=4088584198589734059&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9470317
https://scholar.google.com/scholar?cluster=7562512759742693443&hl=en&as_sdt=0,5
https://www.google.co.in/books/edition/The_Engineering_Design_of_Systems/CsX4EAAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1016/j.fusengdes.2023.113482
https://scholar.google.com/scholar?cluster=5998657565388558711&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/pii/S0920379623000662?via%3Dihub
https://doi.org/10.1109/WORDS.2003.1218078
https://scholar.google.com/scholar?cluster=13519856574872648602&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/1218078
https://doi.org/10.1145/3589227
https://scholar.google.com/scholar?cluster=16560133925278425614&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3589227
https://doi.org/10.1002/spe.957
https://scholar.google.com/scholar?cluster=8614418783632619223&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/10.1002/spe.957
https://doi.org/10.1002/spe.957
https://scholar.google.com/scholar?cluster=8046312130272878782&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/10.1002/spe.957
https://doi.org/10.1007/978-3-031-43056-5_23
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Employment+of+a+Machine+Learning-Based+Recommendation+System+to+Maximize+Netflix+User+Satisfaction&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-43056-5_23
https://doi.org/10.1109/ACC.2000.879544
https://scholar.google.com/scholar?cluster=2361716785814865956&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/879544
https://doi.org/10.1109/ICAC.2018.00028
https://scholar.google.com/scholar?cluster=13734851650285127584&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/8498139
https://doi.org/10.23919/CNSM52442.2021.9615519
https://scholar.google.com/scholar?cluster=14862994393509946973&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9615519
https://doi.org/10.1109/RWS52686.2021.9611797
https://scholar.google.com/scholar?cluster=9799368567137510855&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9611797

Jill Willard & James Hutson / IJRES, 11(5), 51-58, 2024

58

[46] Sebastian Frank et al., “Verifying Transient Behavior Specifications in Chaos Engineering Using Metric Temporal Logic and Property

Specification Patterns,” ICPE ‘23 Companion: Companion of the 2023 ACM/SPEC International Conference on Performance

Engineering, Coimbra Portugal, pp. 319-326, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[47] Yongqing Zhu et al., “AI-based Proactive Storage Failure Management in Software-Defined Data Centres,” ICISS ‘23: Proceedings of

the 2023 6th International Conference on Information Science and Systems, Edinburgh United Kingdom, pp. 231-237, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[48] Alessio Diamanti, José Manuel Sánchez Vílchez, and Stefano Secci, “An AI-Empowered Framework for Cross-Layer Softwarized

Infrastructure State Assessment,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4434-4448, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3578245.3584314
https://scholar.google.com/scholar?cluster=1012020395316525775&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3578245.3584314
https://doi.org/10.1145/3625156.3625190
https://scholar.google.com/scholar?cluster=4242799220283713418&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3625156.3625190
https://doi.org/10.1109/TNSM.2022.3161872
https://scholar.google.com/scholar?cluster=18171661611767580761&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9741309

	Fail Fast, Fail Small: Designing Resilient Systems for the Future of Software Engineering
	Fail Fast, Fail Small: Designing Resilient Systems for the Future of Software Engineering

