
Lindenwood University Lindenwood University

Digital Commons@Lindenwood University Digital Commons@Lindenwood University

Faculty Scholarship Research and Scholarship

9-2024

Bridging Disciplines with AI-Powered Coding: Empowering Non-Bridging Disciplines with AI-Powered Coding: Empowering Non-

STEM Students to Build Advanced APIs in the Humanities STEM Students to Build Advanced APIs in the Humanities

Daniel Plate
Lindenwood University, dplate@lindenwood.edu

James Hutson
Lindenwood University, jhutson@lindenwood.edu

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers

 Part of the Arts and Humanities Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Plate, Daniel and Hutson, James, "Bridging Disciplines with AI-Powered Coding: Empowering Non-STEM
Students to Build Advanced APIs in the Humanities" (2024). Faculty Scholarship. 677.
https://digitalcommons.lindenwood.edu/faculty-research-papers/677

This Article is brought to you for free and open access by the Research and Scholarship at Digital
Commons@Lindenwood University. It has been accepted for inclusion in Faculty Scholarship by an authorized
administrator of Digital Commons@Lindenwood University. For more information, please contact
phuffman@lindenwood.edu.

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/faculty-research-papers
https://digitalcommons.lindenwood.edu/rs
https://digitalcommons.lindenwood.edu/faculty-research-papers?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lindenwood.edu/faculty-research-papers/677?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phuffman@lindenwood.edu

ISAR Journal of Arts, Humanities and Social Sciences

Vol-2, Iss-9 (Sep- 2024)

Abbriviate Title- ISAR J Arts Humanit Soc Sci

ISSN (Online)- 2583-9691

https://isarpublisher.com/journal/isarjahss

44
*Corresponding Author: James Hutson

Bridging Disciplines with AI-Powered Coding: Empowering Non-STEM Students to

Build Advanced APIs in the Humanities

Daniel Plate
1
, James Hutson

2*

Lindenwood University, USA.

*Corresponding Author

James Hutson

Lindenwood

University, USA.

Article History

Received: 30.07.2024

Accepted: 21.08.2024

Published: 12.09.2024

Abstract: The integration of AI-powered coding assistants, such as Cursor AI, GitHub Copilot, and

Replit’s Ghostwriter AI, represents a transformative shift in programming education, particularly

for non-STEM students. These tools democratize coding by enabling natural language code

generation, intelligent error correction, and context-aware assistance within familiar coding

environments. This article explores how these technologies empower educators across disciplines

to introduce basic and advanced coding concepts to humanities students, a demographic

traditionally underserved in programming education. By leveraging AI, instructors can teach non-

STEM students the foundational principles of coding and guide them through the development of

sophisticated projects, such as building APIs for literary analysis or creative world-building. These

endeavors, once reserved for advanced digital humanities research, now become accessible within

the framework of undergraduate humanities courses. The article examines the practical applications

of AI-assisted coding in humanities education, demonstrating how these tools facilitate a deeper

engagement with digital methodologies, thus expanding the horizons of what is possible in these

fields. Additionally, it discusses the potential for AI-powered assistants to address the unique needs

of non-STEM learners, offering a tailored educational experience that aligns with their academic

and creative pursuits. This approach not only enriches the humanities curriculum but also fosters

interdisciplinary collaboration, preparing students for a future where coding literacy is an essential

skill across all domains.

Keywords: AI-powered coding, non-STEM education, humanities, API development, digital

methodologies.

Cite this article:

Plate, D., Hutson, J., (2024). Satirical Deepfakes, Surreal Dreamscapes & Nostalgic Pixels: The Rapid Evolution and Cultural Commentary of

AI-Aesthetics. ISAR Journal of Arts, Humanities and Social Sciences, 2(9), 44-55.

1. Introduction

Generative AI (GAI) has profoundly reshaped educational

practices, influencing everything from instructional design to

student engagement (Bahroun et al., 2023). Advanced AI models

like OpenAI’s GPT series are not only enhancing efficiency but

also altering the creative and pedagogical processes in fields such

as education, curriculum development, and instructional design

(Ruiz-Rojas et al., 2023; Zohuri, 2023). The ability of these

generative tools to autonomously create content and offer

personalized learning experiences is driving innovation in teaching

methodologies, introducing new approaches that emphasize

adaptability, personalization, and scalability in educational

contexts (Weng & Chiu, 2023). In particular, GAI is transforming

how educators approach curriculum development by facilitating

the creation of tailored educational materials that can cater to

diverse learning styles and levels of student proficiency. This

technology allows for the rapid development of interactive learning

modules, assessments, and even real-time feedback mechanisms,

thereby enriching the learning experience (Yuan et al., 2023). The

impact of GAI is especially significant in knowledge-based

education sectors, where the automation of routine instructional

tasks enables educators to focus more on strategic and creative

aspects of teaching (Brynjolfsson et al., 2023).

Despite the rapid advancements in GAI, its integration into

educational settings has largely remained confined to curriculum

development and instructional design (Ng et al., 2023). While

approximately 60% of educators have begun adopting GAI tools,

their application has yet to fully penetrate the forward-facing

classroom experience, particularly in teaching students how to

effectively use these technologies (Hamilton & Swanston, 2024).

This limited adoption is especially pronounced within Computer

Science departments, which, paradoxically, have lagged behind

other disciplines in embracing GAI for pedagogical purposes

(Hutson & Jeevanjee, 2024). Many Computer Science programs

continue to adhere to traditional methods of teaching coding and

programming, missing the opportunity to incorporate GAI as a

https://isarpublisher.com/journal/isarjahss
https://orcid.org/0000-0002-0578-6052

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

45

transformative educational tool that could make coding more

accessible and engaging for students (Hazzan & Erez, 2024).

Furthermore, in fields where GAI has been integrated into

classroom instruction, its usage has primarily focused on

generating written content rather than on teaching foundational

coding skills (Tseng & Warschauer, 2023). This trend overlooks

the potential of GAI to serve as a democratizing force in education,

where the focus should now shift towards leveraging these tools to

teach basic coding. In doing so, educators across disciplines—not

just in STEM fields—can empower students with essential coding

skills, making programming accessible to a broader audience and

fostering interdisciplinary collaboration. The time has come for

educational institutions to move beyond using GAI merely as an

aid in writing and curriculum design and to explore its full

potential in democratizing coding education, particularly by

integrating it into everyday classroom experiences (Melro et al.,

2023).

The history of how coding is taught reinforces the integration of

new tools as technology evolves. For instance, since the 1980s, the

evolution of software development has fundamentally transformed

educational practices in programming, particularly through the

transition from mainframe systems to object-oriented programming

(OOP) (Holo et al., 2023; Nagineni, 2021). In the mainframe era,

programming education was often confined to a specialized few,

with a focus on centralized, monolithic applications managed by

experts (Grütter, 2024; Megargel, Shankararaman, & Walker,

2020). The advent of OOP, however, introduced key concepts such

as modularity, encapsulation, and reusability, which not only

simplified the development process but also revolutionized the way

programming is taught and learned (Krismadinata et al., 2023;

Saide, 2024). This shift towards OOP opened the doors for a more

diverse range of learners to engage with software development, as

the modular nature of OOP reduced the steep learning curve

traditionally associated with programming (Gutiérrez, Guerrero, &

López-Ospina, 2022; Li et al., 2008). The educational landscape

adapted to these changes, with curricula increasingly emphasizing

the understanding of class hierarchies, inheritance, and

polymorphism—core principles that underpin flexible and

maintainable software design (Jablonický & Lang, 2023;

Liverman, Berri, & Ben-David Kolikant, 2011). However, these

advancements also introduced new complexities, particularly in

teaching how to manage evolving software requirements and

dependencies between objects, which are critical for maintaining

large-scale systems (Kasauli et al., 2021; Mens, 2014).

In response, educators have increasingly incorporated

methodologies and tools that support the iterative development and

refinement of object-oriented systems, such as refactoring and the

application of design patterns (Gamma et al., 1993; Rajlich, 1997).

This evolution in pedagogy reflects the broader trend of adapting

teaching strategies to address growing system complexities while

maintaining efficiency and scalability in the learning process.

Moreover, as AI has been increasingly integrated into the software

industry, it is anticipated that these tools will further augment the

teaching of OOP by automating routine tasks, thereby allowing

educators and students to focus more on creative, strategic, and

complex problem-solving activities (Santhosh et al., 2023). This

mirrors historical shifts in technology, where new tools and

methodologies have consistently enabled professionals to transcend

routine tasks, engaging instead in higher-value educational

activities (Hordern, 2018; Magana, 2017).

As the teaching of coding evolves, it is important to note that,

historically, the teaching of it has remained largely within the

confines of Computer Science departments, creating a disciplinary

boundary that has limited the accessibility of programming skills to

students outside of STEM fields (Castro, 2015). This separation

has particularly affected the humanities, where the integration of

coding into the curriculum has been minimal, often relegated to

specialized digital humanities courses or advanced research

contexts (Drucker, 2021). However, the advent of GAI has the

potential to dismantle these barriers, offering an unprecedented

opportunity for all disciplines to incorporate coding into their

educational frameworks. These tools, such as Cursor AI, GitHub

Copilot, and Replit’s Ghostwriter AI, not only lower the entry

barriers to basic coding but also enable non-STEM educators to

introduce more advanced programming concepts, such as API

development, into their courses.

This article will explore actionable strategies for integrating coding

into non-STEM curricula, with a particular focus on the

humanities. Through demonstration of how educators can utilize

GAI to teach both foundational coding skills and complex

programming tasks, such as building APIs for literary analysis or

creative world-building, this work addresses a significant gap in

current educational practices. The ability to teach students in the

humanities how to develop APIs—a task previously reserved for

advanced digital humanities research—represents a transformative

shift in pedagogy. This shift not only equips students with valuable

technical skills but also enhances their ability to engage with

digital tools in meaningful and innovative ways. Through the

examples and strategies presented in this article, educators across

disciplines will find practical guidance on how to enrich their

curricula, making coding an accessible and integral part of the

educational experience for all students, regardless of their

disciplinary background.

2. History of Software Development Education

The history of software development is a narrative of rapid

technological progress, characterized by distinct eras that have

shaped the evolution of the industry (Table 1). Beginning in the

1940s and 1950s with the development of early computers, the

field has undergone transformative shifts, evolving from

rudimentary machine language coding to the sophisticated

programming paradigms in use today. These transitions—from the

mainframe systems of the mid-20th century to the more modular

and flexible development methodologies that followed—have

consistently reduced the complexity of coding and expanded access

to software development. This ongoing progression has culminated

in the highly interconnected and automated systems that define

contemporary software engineering (Jadhav, Kaur, & Akter, 2022).

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

46

Table 1. History of Coding Education

Era Period Key Developments in Teaching Coding Key Technologies/Concepts

Early Computing
1940s -

1950s

- Focus on machine and assembly language coding

in academic settings.

- Programming done on mainframes with punch

cards and manual input.

ENIAC, Von Neumann architecture, machine

language, assembly language

Mainframe Era
1960s -

1970s

- Introduction of structured programming principles

into curricula.

- Emphasis on managing complexity with control

structures.

COBOL, Fortran, Structured Programming, Batch

Processing

Personal

Computing Era

1970s -

1980s

- Shift to personal computing with more accessible

programming languages like BASIC.

- Introduction of Graphical User Interfaces (GUIs).

BASIC, MS-DOS, C++, Graphical User

Interfaces (GUIs)

Internet and Open

Source

1990s - Early

2000s

- Integration of web technologies into curricula.

- Rise of open-source software and community-

driven development practices.

HTML, JavaScript, PHP, Linux, Apache HTTP

Server

Agile and DevOps 2000s

- Shift to Agile methodologies and DevOps in

software engineering education.

- Emphasis on iterative development and continuous

deployment.

Agile, DevOps, CI/CD, Git, Jenkins, Docker

AI Integration
2020s -

Present

- Introduction of AI-powered coding tools into non-

CS disciplines.

- Focus on democratizing coding and

interdisciplinary application.

GitHub Copilot, GPT-4, ChatGPT, Generative

AI, AI in Education

In the 1940s and 1950s, software development education in

colleges was characterized by its nascent stage, focusing primarily

on programming using machine languages and assembly

languages. Early computers like ENIAC, primarily designed for

scientific and military purposes, required programmers to manually

input instructions via punch cards, making programming a

complex and specialized skill (Haigh & Ceruzzi, 2021). The

introduction of the Von Neumann architecture during this period

marked a significant advance, allowing programs to be stored in

memory, which enabled sequential execution and laid the

groundwork for future software development practices (Collen &

Kulikowski, 2015). However, the academic focus during this era

remained highly technical and limited to a small group of

specialists who were often involved in pioneering hardware and

software development efforts within research institutions.

As computing technology advanced, the mainframe era emerged,

characterized by the dominance of large-scale computers primarily

utilized by governments and large corporations. This period

witnessed the development of programming languages like

COBOL and Fortran, which were designed to manage business and

scientific applications, respectively (Bessen, 2022). The 1960s also

saw the introduction of structured programming principles, which

addressed the growing complexity of software systems by

promoting more maintainable and efficient code practices (Farley,

2021). Mainframes operated on a batch processing model, where

tasks were queued and executed sequentially. Although this model

limited interactivity, it was well-suited to the large-scale data

processing needs of the time (Campbell-Kelly & Garcia-Swartz,

2015). The era also marked the beginnings of standardization in

software development practices, laying the foundation for the more

flexible computing systems that would follow.

In the 1960s, the introduction of structured programming principles

marked a significant shift in how software development was taught

in colleges. This period saw the emergence of methodologies that

emphasized the importance of control structures, such as loops and

conditional statements, and the avoidance of the "goto" statement,

which was seen as a source of programming errors and complexity.

These principles, advocated by prominent computer scientists like

Edsger Dijkstra, were incorporated into computer science

curricula, laying the groundwork for more disciplined and

systematic approaches to software development (Dijkstra, 1996).

The focus on structured programming was intended to produce

code that was not only more reliable and maintainable but also

easier to understand and modify. This educational shift was part of

a broader movement to professionalize programming and address

the "software crisis" of the time, which was characterized by

frequent software failures and escalating development costs

(Williams, 2013).

The 1970s and 1980s marked a significant shift in software

development with the advent of personal computing, largely driven

by the development of microprocessors (Khan et al., 2021). As

computing power became more affordable and accessible, personal

computers (PCs) began to proliferate in homes and offices. This

era witnessed the popularization of operating systems like MS-

DOS and the widespread adoption of programming languages such

as BASIC, which made computing more approachable for both

hobbyists and professionals (Bright et al., 2020). The introduction

of graphical user interfaces (GUIs) with products like Apple's

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

47

Macintosh and Microsoft Windows further revolutionized software

usability, making computers more intuitive for non-technical users

and significantly expanding the user base (Ceruzzi, 1998). These

developments not only facilitated the personal computing boom but

also shifted the software industry’s focus from mainframes to user-

centric applications, paving the way for the democratization of

computing (Barlaskar, 2020).

The evolution of software development continued to gain

momentum in the 1980s with the emergence of object-oriented

programming (OOP), a paradigm that introduced key concepts

such as encapsulation, inheritance, and polymorphism (Koti et al.,

2024). These foundational principles enabled developers to create

software systems that were not only more modular and

maintainable but also more scalable. The adoption of languages

like C++ and later Java became widespread, facilitating the

construction of complex applications with enhanced flexibility and

efficiency (Ogala & Ojie, 2020). OOP marked a significant

departure from procedural programming by shifting the focus to an

object-based approach, where software components could be

reused and managed more effectively (Dony et al., 1992). The

concurrent rise of the client-server model during this era further

empowered businesses to deploy enterprise-level software across

interconnected systems, thereby accelerating the adoption of OOP

methodologies (Sallow et al., 2020). This period underscores how

the convergence of accessible personal computing and innovative

programming paradigms like OOP laid the groundwork for the

rapid expansion of software development, culminating in the

diverse and interconnected systems that underpin today’s digital

infrastructure.

During the rise of personal computing, it significantly influenced

how software development and programming were taught in

colleges. During this era, the advent of personal computers,

particularly with the introduction of IBM PCs, revolutionized the

accessibility of computing resources to students and educators

alike (Hunter, 1988). Courses began to incorporate languages such

as BASIC, which became widely popular due to its simplicity and

adaptability to the emerging personal computing platforms (Kafai

& Burke, 2013). This period where GUIs were integrated into

Macintosh and WIndows PCs marked a transition from the

traditional use of mainframe computers in education to more

decentralized, personal computing environments that allowed for

more interactive and practical learning experiences in

programming and software development (O'Neil, 1987).

The 1990s and early 2000s represented a transformative era in

software development, driven by the explosive growth of the

internet and the rise of open-source software. The widespread

adoption of web technologies such as HTML, JavaScript, and PHP

enabled the creation of dynamic, interactive websites, leading to a

proliferation of web-based applications that became integral to

daily life (Lendarduzzi et al., 2020). During this period, software

like web browsers, email clients, and early content management

systems emerged as essential tools, reflecting the internet's

increasing influence on personal and professional activities. This

era also marked a significant shift in software development models

with the rise of the open-source movement (Tabarés, 2021).

Landmark projects such as Linux and the Apache HTTP server

demonstrated the potential of decentralized, community-driven

development to produce reliable and scalable software solutions.

These open-source initiatives not only spurred innovation but also

challenged traditional software business models by making

software freely available and modifiable, fostering a culture of

collaboration and shared knowledge (Bretthauer, 2001).

At the same time, the teaching of software development in this

period in colleges began to adapt to the rapidly evolving

technological landscape, particularly with the rise of the internet

and the proliferation of new development tools. During this period,

academic programs increasingly focused on bridging the gap

between theoretical knowledge and practical skills, as students

were introduced to software engineering principles that

emphasized real-world applications. This era saw the integration of

distributed computing systems and networked environments into

the curriculum, reflecting the industry's shift towards

interconnected software systems (Stewart, 1994). Additionally,

courses began to incorporate more collaborative and project-based

learning approaches, with an emphasis on teamwork and the use of

modern development methodologies, such as Agile and Extreme

Programming, to better prepare students for the collaborative

nature of software development in the industry (Dubinsky &

Hazzan, 2005). Despite these advancements, a gap persisted

between academic training and industry expectations, particularly

in terms of equipping students with the hands-on experience

needed to navigate the complexities of professional software

development environments (Craig, 2019).

The 2000s brought about further evolution in software

development methodologies with the introduction of Agile

practices (Argen et al., 2022). Departing from the rigid, linear

waterfall model, Agile methodologies emphasized iterative

development, continuous feedback, and close collaboration with

customers. This approach allowed development teams to rapidly

adapt to changing requirements and deliver software in small,

manageable increments, thereby enhancing productivity and

customer satisfaction (Ogundipe et al., 2024). Simultaneously, the

emergence of DevOps represented a cultural and operational shift,

integrating development and operations to streamline software

deployment processes. DevOps practices, which focused on

automating the entire software delivery pipeline, enabled

continuous integration and continuous delivery (CI/CD) (Mishra &

Otaiwi, 2020). By breaking down traditional silos between

development and operations teams and promoting automation,

organizations achieved more frequent and reliable software

deployments (Mockus et al., 2002).

The combination of Agile, DevOps, and open-source development

practices has fundamentally reshaped the field of software

engineering, fostering an environment that supports rapid iteration,

enhanced collaboration, and the creation of more resilient systems.

They also forced the integration into software development

curricula marked a significant shift in how these methodologies

were taught in colleges. Agile development practices, which

emphasize iterative progress, continuous feedback, and customer

collaboration, became increasingly central to software engineering

education. This shift was driven by the need to equip students with

the skills to manage rapid software delivery cycles and adapt to

evolving project requirements. DevOps, which integrates

development and operations to streamline the software deployment

process, was introduced alongside Agile to provide students with a

comprehensive understanding of the end-to-end software

development lifecycle (Jennings & Gannod, 2019). Courses began

incorporating hands-on experiences with tools like Git, Jenkins,

Docker, and AWS, reflecting the industry's shift towards

continuous integration and delivery (Kavya & Smitha, 2022).

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

48

These educational practices aimed to bridge the gap between

theoretical knowledge and the practical demands of the modern

software industry, preparing students for the collaborative and fast-

paced nature of contemporary software engineering environments

(Betz, Olagunju, & Paulson, 2016).

3. Teaching Coding in the Age of AI

The integration of AI into software development is not only

revolutionizing how code is written, tested, and deployed but also

transforming the teaching of coding beyond traditional Computer

Science departments. AI-powered tools like GitHub Copilot have

gained popularity, offering automated code suggestions and

autocompletion that significantly enhance productivity. These tools

leverage large language models (LLMs) trained on extensive code

repositories to generate relevant code snippets based on natural

language inputs. Research shows that developers primarily use

these tools to reduce keystrokes, complete tasks more quickly, and

recall syntax, making them valuable for both novice and

experienced programmers. However, challenges such as limitations

in the functional accuracy of generated code and the cognitive

overhead required to validate AI-generated suggestions persist

(Liang et al., 2023).

AI-driven automation tools are also advancing continuous

deployment practices, emphasizing rapid, small, and incremental

changes through CI/CD pipelines and orchestration tools. Through

automating testing, deployment, and monitoring, AI reduces the

need for manual intervention and enables more frequent, reliable

releases. Automated deployment pipelines integrated with AI can

manage everything from code commits to production deployment,

allowing for seamless updates with minimal downtime. This

integration enhances agility and reduces time-to-market without

compromising reliability (Sailer & Petrič, 2019). However, despite

these advancements, the implementation of AI in software

development presents complexities, such as compatibility and

integration challenges. While AI tools like GitHub Copilot excel in

generating code, significant hurdles remain in terms of usability

and integration within existing workflows. Future developments

are expected to focus on improving the quality of suggestions and

reducing the cognitive load on developers, refining these tools to

become more reliable and effective (Zhou et al., 2023).

Moreover, GAI tools are expanding their capabilities, enabling

professionals outside traditional programming backgrounds to

perform complex software development tasks. By automating code

generation, bug detection, and deployment processes, GAI tools

significantly lower the barriers to entry for those not formally

trained in coding. This democratization of software development

allows industries such as design, marketing, and data analysis to

integrate custom software solutions tailored to their specific needs,

driven by domain experts rather than coders (Bull & Kharrufa,

2023).

The implications of this trajectory extend beyond automating

routine coding tasks. GAI systems are increasingly used in creative

and strategic roles, allowing non-programmers to prototype

applications, automate data analysis, and even develop AI models.

For instance, in innovation management and digital prototyping,

GAI tools enable rapid iteration of designs and generation of

diverse solutions, empowering professionals without coding

expertise to engage directly in technical processes. This trend

suggests a future where software development becomes a

collaborative, cross-disciplinary activity, supported by AI tools that

handle technical complexities. Such tools not only enhance

productivity but also reduce the need for specialized coding

knowledge, enabling more professionals across various fields to

focus on high-level problem-solving and innovation (Ebert et al.,

2023).

In the context of education, this evolution will profoundly impact

how coding is taught across disciplines. As AI tools make coding

more accessible, educators in non-STEM fields can incorporate

programming into their curricula, equipping students with essential

skills that were previously confined to Computer Science

departments. Leveraging AI to teach coding allows these

disciplines can empower students to engage with digital tools in

meaningful ways, ultimately broadening the scope and relevance of

coding education across the academic spectrum.

The integration of AI-powered coding tools into various disciplines

beyond traditional Computer Science departments represents a

significant shift in educational practices, offering both

opportunities and challenges for educators. AI tools like GitHub

Copilot, which leverage large language models to generate code

snippets from natural language inputs, have the potential to

democratize coding by making it more accessible to students and

professionals in non-STEM fields. For instance, in disciplines such

as humanities, social sciences, and the arts, AI can facilitate the

development of projects that previously required advanced

programming skills, such as creating APIs for digital humanities

research or automating data analysis for sociological studies

(Zawacki-Richter et al., 2019).

Pedagogical strategies for integrating these tools must focus on

building confidence and competence among educators who may

not have a background in coding. Research has shown that

educators in non-STEM fields often view coding as a critical skill,

yet many lack the confidence to incorporate it into their teaching

practices (Ray et al., 2020). To address this, professional

development programs should include hands-on experiences with

AI-powered coding tools, peer discussions, and reflective practices

that enable educators to see the practical applications of coding in

their disciplines. Such programs can help educators transition from

viewing coding as an intimidating technical skill to recognizing it

as a valuable tool for enhancing teaching and learning across

various fields (McInnes et al., 2024).

Furthermore, the co-design of AI tools with educators can lead to

the development of more tailored and effective educational

resources. By involving teachers in the design process, these tools

can be better aligned with the specific needs and contexts of

different disciplines, ensuring that AI integration supports, rather

than disrupts, existing pedagogical frameworks (Nazaretsky et al.,

2021). This collaborative approach not only enhances the relevance

and usability of AI tools but also empowers educators to take

ownership of the technology and use it to enrich their instructional

practices.

Therefore, the future of teaching software development in the age

of AI lies in expanding the use of AI-powered coding tools across

disciplines, supported by targeted pedagogical strategies that build

educator confidence and competence. The following section will

be dedicated to exploring a specific example from the Humanities,

demonstrating how AI-powered coding tools can be effectively

integrated into non-STEM disciplines. This case study will focus

on the practical application of these tools in a literature course,

where students will learn to develop an API for literary analysis.

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

49

This example will illustrate how AI can not only lower the barrier

to entry for coding but also enrich the learning experience by

enabling students to engage with digital tools in innovative and

meaningful ways, thus expanding the traditional boundaries of

humanities education.

4. Case Study: Integrating AI-Powered Coding

in a Literature Course

4.1 Overview

This case study exemplifies the practical application of AI-

powered coding tools within a literature course, focusing

specifically on the development of an API for Point of View

(POV) analysis. By engaging with this process, educators and

students in non-STEM fields can harness AI to tackle complex

digital tasks, thus broadening the scope of traditional humanities

education. The study illustrates a collaborative journey where an

instructor, without extensive coding experience, utilizes AI as a

software engineering consultant to conceptualize and develop a

tool designed to analyze sophisticated literary concepts. These

concepts include free indirect discourse, narrator trustworthiness,

and epistemic anomalies, all captured in a structured digital format.

The development process of the POV analysis API commenced

with a conceptualization phase, where the instructor worked

alongside the AI to define the tool’s objectives. This initial stage

was followed by designing a database structure capable of

capturing the nuances of literary analysis, with AI providing

critical guidance on data schema creation. The process then moved

to API endpoint planning, where the instructor learned about user

interaction with data through accessible explanations provided by

the AI. In the implementation phase, the AI generated code

snippets and offered clear, jargon-free explanations, making the

technical aspects of development more approachable for the

humanities-focused instructor. The iterative development process,

enriched by continuous AI feedback, provided a realistic

simulation of software development practices, offering valuable

insights into digital project management.

To integrate this API development process into the literature

curriculum, the instructor crafted an assignment that walks students

through each step of creating their own literary analysis API. This

structured assignment not only introduces students to API concepts

but also encourages the application of digital humanities

methodologies, thus fostering an interdisciplinary approach to

literary studies. The case study ultimately demonstrates how AI-

powered coding tools can democratize access to technical skills in

the humanities, equipping students with valuable competencies for

an increasingly digital academic and professional landscape. By

providing a model for integrating AI-assisted coding into non-

STEM curricula, this case study highlights the potential for AI to

bridge the gap between humanities scholarship and technical

implementation, paving the way for innovation in both pedagogy

and digital humanities research.

4.2 API Development Process

The development of the POV analysis API (Table 2) began with a

conceptualization phase, during which the instructor, who

possessed limited coding experience, collaborated closely with an

AI language model serving as a virtual software engineering

consultant. The main goal of this collaboration was to create a tool

capable of analyzing advanced literary concepts such as free

indirect discourse, narrator trustworthiness, and epistemic

anomalies in a digital format. This phase was crucial, as the

instructor translated abstract literary analysis ideas into actionable

digital functions that could be supported by modern programming

methodologies. The AI's assistance proved instrumental in

transforming these complex theoretical concepts into a practical

framework for a software application, underscoring the role of AI

in enabling non-technical users to contribute meaningfully to

software development.

Table 2. API Development Process

Phase Description Role of AI

Conceptualization

Collaborated with AI to conceptualize a literary analysis

tool capable of analyzing complex literary concepts like

free indirect discourse.

AI acted as a software engineering consultant, translating

abstract literary ideas into actionable digital functions.

Database Structure

Design

Designed a data schema to capture the nuances of

literary analysis, including fields for POV type, narrator

trustworthiness, and narration nodes.

AI provided guidance on structuring the database, helping to

translate complex literary concepts into measurable data

points.

API Endpoint

Planning

Planned API endpoints for creating, retrieving, updating,

and deleting literary analysis entries, focusing on how

users would interact with the data.

AI broke down technical concepts into accessible terms,

making API interactions understandable for non-technical

users.

Implementation

Developed the API using modern web technologies, with

AI generating code snippets and providing explanations

of unfamiliar concepts.

AI generated comprehensible code and offered jargon-free

explanations, enabling the instructor to actively participate in

the coding process.

Iterative

Development

Engaged in an iterative process of refinement, with the

AI suggesting improvements and alternative approaches

based on best practices.

AI continuously provided feedback and refinement

suggestions, mimicking real-world software development

scenarios and enhancing the instructor’s understanding.

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

50

In the subsequent database structure design phase, the challenge

was to create a structured data format that could capture the

subtleties of literary analysis. With AI guidance, the instructor

designed a schema that included fields for essential elements such

as text content, the type of POV, narrator trustworthiness, and key

"narration nodes" – points in the text where shifts in narrative

perspective occur. This stage exemplified how AI-powered tools

can help bridge the gap between domain expertise in literature and

technical implementation. AI’s recommendations on structuring

the database allowed the instructor to convert literary elements into

measurable data points, a task that would have been significantly

more difficult without technical expertise. By utilizing AI, the

instructor was able to devise a schema that could efficiently store

and retrieve complex literary data for analysis.

The API endpoint planning stage was pivotal in determining how

users would interact with the data stored in the database. The

instructor, unfamiliar with how APIs functioned, relied heavily on

AI to break down the complexities of API interactions into simple,

digestible explanations. The AI provided insights into how to

design endpoints for creating, retrieving, updating, and deleting

literary analysis entries, offering suggestions on the appropriate

web technologies to use. This stage not only highlighted the AI’s

ability to demystify technical concepts for non-STEM educators

but also showcased how accessible coding could become when

guided by intuitive AI tools. The planning stage was integral to

establishing a user-friendly interface, allowing literary analyses to

be conducted and manipulated in a seamless digital environment.

During the implementation phase, the instructor worked alongside

the AI to translate the API plans into functioning code. AI-

generated code snippets provided a crucial foundation, allowing

the instructor to see firsthand how abstract technical concepts came

to life through programming. The AI also offered clear, jargon-free

explanations of the coding language, helping to bridge gaps in the

instructor's technical knowledge. This collaboration underscored

the accessibility of AI-assisted development for non-technical

users, allowing a humanities-focused instructor to take an active

role in building sophisticated digital tools without being

overwhelmed by the technicalities of coding. As the AI handled the

more challenging aspects of the coding process, the instructor was

able to focus on applying literary expertise to ensure the digital

tool met the academic goals of the course.

Throughout the process, the instructor and AI engaged in iterative

development, an ongoing cycle of refinement based on best

practices in software development. The AI continuously suggested

improvements and alternative approaches, incorporating insights

from the instructor’s literary analysis goals into the development

process. This iterative refinement phase mimicked real-world

software development workflows, providing a valuable learning

experience for students as well. By observing how changes and

adjustments were made in response to feedback, the instructor

gained a deeper understanding of digital project management and

agile development principles.

Incorporating these technical components into the curriculum, the

case study offers a model for how AI-powered coding tools can

facilitate the integration of software development skills into non-

STEM disciplines. By using AI as a guide, educators in fields like

literature can bring digital projects to life, enabling students to

engage with coding in a way that enhances their academic

experience without requiring advanced technical skills. This

collaborative approach demonstrates how AI can expand the

possibilities of teaching and learning, bridging the gap between the

humanities and digital technology.

4.3 Integration of API into Literature Curriculum

To effectively integrate the API development process into the

literature curriculum, the instructor crafted a comprehensive

assignment designed to guide students through the creation of their

own literary analysis API (Table 3). This structured assignment

was carefully developed to ensure that students could engage with

both the technical and literary aspects of the project, thereby

fostering an interdisciplinary approach to their studies. The

assignment begins with an Introduction to API concepts and their

relevance to literary studies. In this initial phase, students are

introduced to the basics of APIs, focusing on how these tools can

be used to facilitate digital literary analysis. By grounding students

in the fundamental concepts of API technology, this step ensures

they understand the practical applications of digital tools within the

context of their literary studies.

Table 3. Steps to Integrate AI into Curriculum

Assignment Step Description

1. Introduction to API concepts
Introduces students to the basics of APIs and explains their relevance to literary studies,

establishing a foundation for the subsequent technical work.

2. Guided database design
Guides students through the process of structuring data for literary analyses, focusing on

translating literary concepts like POV into structured formats.

3. Collaborative API endpoint creation using

AI coding assistants

Involves students in developing API endpoints with the help of AI tools, making the technical

aspects of coding accessible and manageable.

4. Implementation of POV analysis features
Students apply their literary knowledge and coding skills to build features that analyze narrative

perspectives within texts, integrating theory and practice.

5. Development of a basic user interface
Teaches students the principles of user interface design, allowing them to create a user-friendly

interface for interacting with their API.

6. Testing and documentation of the API
Focuses on the importance of testing and documenting the API, ensuring functionality and

providing a clear record of the development process.

7. Reflection on the use of AI in the

development process

Encourages students to reflect on the role of AI in their work, considering its impact on literary

analysis and future applications in the humanities.

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

51

Following the introduction, students engage in a Guided database

design session, where they learn how to structure data for storing

literary analyses. This phase involves creating a schema that

reflects the nuances of literary texts, such as Point of View (POV),

narrator reliability, and narrative shifts. The guided design process

helps students translate complex literary concepts into structured

data formats, providing a solid foundation for the API they will

develop. Next, students move on to Collaborative API endpoint

creation using AI coding assistants. In this stage, students work

with AI tools to develop the necessary API endpoints for their

analysis. The AI assists in breaking down the coding process,

making it accessible to students with limited technical

backgrounds. This collaboration allows students to focus on the

literary content while the AI handles the more challenging

technical aspects, thus bridging the gap between literature and

technology.

The fourth step involves the Implementation of POV analysis

features. Here, students apply their knowledge of both literature

and coding to build features that analyze narrative perspectives

within texts. This practical application reinforces their

understanding of literary theory and demonstrates how digital tools

can enhance traditional literary analysis. Students then proceed to

the Development of a basic user interface, which allows users to

interact with the API. This step introduces them to the principles of

user interface design, ensuring that the tools they create are not

only functional but also user-friendly. By building a simple

interface, students learn to consider the end-user experience, an

important aspect of digital humanities work.

In the Testing and documentation phase, students test their APIs to

ensure they function as intended and document the development

process. This step emphasizes the importance of thorough testing

and clear documentation in software development, skills that are

transferable to many other academic and professional contexts.

Finally, students conclude the assignment with a Reflection on the

use of AI in the development process. This reflective component

encourages them to consider the role of AI in their work, its impact

on their approach to literary analysis, and the potential for future

applications of digital tools in the humanities.

The assignment (Table 4) was found to not only equip students

with practical coding skills but also encourage them to engage with

digital humanities methodologies. By using AI coding assistants,

students can overcome technical barriers and focus on applying

their literary knowledge to create functional digital tools. This

interdisciplinary approach enriches the literature curriculum,

preparing students to navigate the increasingly digital landscape of

academic research and professional practice.

Table 4. Assignment: Developing a Literary Analysis API with AI Assistance

Assignment: Developing a Literary Analysis API with AI Assistance

Objective:

This assignment aims to guide you through the process of developing an API (Application Programming Interface) for literary

analysis, specifically focusing on Point of View (POV) analysis. You will use AI-powered coding tools to create a digital tool that can

analyze literary texts, bridging the gap between traditional humanities studies and modern digital methodologies.

Assignment Structure:

1. Introduction to API Concepts

 Task: Read the provided materials on API basics and watch the introductory video on how APIs function in digital

humanities.

 Objective: Understand the fundamentals of APIs and how they can be applied to literary studies.

 Deliverable: A brief summary (200-300 words) of your understanding of APIs and their relevance to literary analysis.

2. Guided Database Design

 Task: Design a database schema for storing literary analyses. Your schema should include fields for text content, POV type,

narrator trustworthiness, and narration nodes.

 Objective: Translate literary concepts into a structured data format that can be analyzed digitally.

 Deliverable: A diagram or description of your database schema, including explanations of each field.

3. Collaborative API Endpoint Creation Using AI Coding Assistants

 Task: Use AI coding assistants like GitHub Copilot to develop API endpoints for creating, retrieving, updating, and deleting

literary analysis entries.

 Objective: Learn how to use AI tools to assist in coding and understand the basic structure of an API.

 Deliverable: The code for your API endpoints, along with comments explaining the function of each endpoint.

4. Implementation of POV Analysis Features

 Task: Implement features in your API that analyze narrative perspectives within texts, such as identifying shifts in POV or

assessing narrator reliability.

 Objective: Apply your literary analysis skills in a digital context, using coding to create analytical tools.

 Deliverable: The code for your POV analysis features, accompanied by a brief explanation of how each feature works.

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

52

5. Development of a Basic User Interface

 Task: Design a simple user interface that allows users to interact with your API, such as inputting text for analysis and

viewing results.

 Objective: Learn the basics of user interface design and how it can enhance the usability of digital tools.

 Deliverable: A prototype or wireframe of your user interface, along with a description of its functionality.

6. Testing and Documentation of the API

 Task: Test your API to ensure it functions correctly and document the development process, including challenges faced and

how they were overcome.

 Objective: Understand the importance of testing in software development and create a record of your project for future

reference.

 Deliverable: A report (500-700 words) detailing your testing process, results, and the documentation of your API.

7. Reflection on the Use of AI in the Development Process

 Task: Reflect on your experience using AI coding assistants in this project. Consider how AI impacted your approach to

literary analysis and the potential for AI in the humanities.

 Objective: Critically assess the role of AI in your work and its broader implications for digital humanities.

 Deliverable: A reflective essay (400-500 words) discussing the benefits and challenges of using AI in your project.

Submission:

Please compile all deliverables into a single document and submit it to the course's online portal by [due date].

Evaluation Criteria:

Your assignment will be evaluated based on the following criteria:

 Understanding and application of API concepts

 Quality and accuracy of the database schema

 Effective use of AI tools in coding

 Functionality and originality of the POV analysis features

 User interface design and usability

 Thoroughness of testing and clarity of documentation

 Depth of reflection on AI's role in your work

Resources:

 API basics guide and video

 AI coding assistant tutorials

 Sample code snippets

 Database design templates

 User interface design tools

This assignment is designed to not only teach you the basics of coding with AI assistance but also to show you how digital tools can be

applied to enhance literary studies. Good luck, and enjoy the process of bridging literature and technology!

Recommendations

The case study highlights the transformative potential of AI-

powered coding tools in democratizing technical skill development

within the humanities. Based on the experiences and insights

gained from integrating AI into a literature course, several key

recommendations emerge for educators and institutions aiming to

introduce similar initiatives. One of the critical lessons from this

case study is the importance of iteration. The first two versions of

the API development process faced significant challenges and

ultimately failed to meet the desired outcomes. It was only through

continuous refinement and the incorporation of feedback that the

third version succeeded. Educators should adopt an iterative

approach when integrating AI and coding into their curricula,

allowing for trial and error, and encouraging students to see failure

as a step towards improvement. This mindset not only mirrors real-

world software development practices but also fosters resilience

and adaptability among students.

Before diving into the technical aspects of coding, it is crucial to

establish a solid conceptual foundation. In the case study, the initial

phase of conceptualizing the literary analysis tool provided a clear

framework that guided the subsequent technical work. Educators

should ensure that students have a strong understanding of the

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

53

theoretical underpinnings of their projects, which will help them

make informed decisions during the development process. AI-

powered tools played a crucial role in bridging the gap between the

instructor’s literary expertise and the technical requirements of

software development. Institutions should explore AI tools that can

demystify complex coding concepts and make technical skills

accessible to non-STEM students and educators. By leveraging AI

as a collaborative partner in the development process, humanities

scholars can engage with digital tools without being hindered by a

lack of programming experience.

The integration of AI-assisted coding in literature courses not only

enhances digital literacy but also opens new avenues for

interdisciplinary collaboration. Educators should encourage

students to collaborate across disciplines, combining their

humanities expertise with technical skills to create innovative

digital tools. This approach can lead to the development of unique

projects that enrich both the humanities and the computational

fields. To successfully implement AI-powered coding tools in non-

STEM disciplines, educators must be equipped with the necessary

skills and confidence. Institutions should invest in professional

development programs that provide hands-on training with AI tools

and offer continuous support as educators integrate these

technologies into their teaching practices. This investment will

ensure that instructors can effectively guide students through the

technical aspects of their projects.

Continuous evaluation and iteration of the curriculum are essential

to the successful integration of AI-assisted coding. Educators

should regularly assess the effectiveness of their teaching methods,

gather feedback from students, and make adjustments as needed.

This iterative approach to curriculum design ensures that the

educational experience remains relevant, engaging, and aligned

with the evolving digital landscape. Finally, institutions should

strive to make digital humanities resources, including AI-powered

tools, more accessible to all students. This may involve providing

access to software, offering workshops on digital literacy, and

creating online repositories of tutorials and best practices. By

expanding access, institutions can ensure that more students can

benefit from the opportunities presented by AI and coding in the

humanities.

The integration of AI-powered coding tools into humanities

education represents a significant step towards bridging the gap

between literary scholarship and technical implementation. By

embracing iterative development, fostering interdisciplinary

collaboration, and providing robust support for educators and

students, institutions can create a learning environment that

prepares students for the increasingly digital academic and

professional landscape. This case study offers a model for how

non-STEM disciplines can effectively leverage AI to enhance

digital literacy, foster innovation, and open new avenues for

computational analysis in literary studies.

Conclusion

This article has explored the transformative potential of AI-

powered coding tools in reshaping the landscape of software

development education, particularly beyond the confines of

traditional Computer Science departments. As highlighted, the

integration of AI into software development practices—through

tools like GitHub Copilot and other generative AI technologies—

has opened up new possibilities for educators and students across

various disciplines. By lowering the technical barriers to entry,

these tools make coding more accessible to individuals without

formal programming backgrounds, thereby democratizing software

development and fostering interdisciplinary innovation.

The need to incorporate these AI-driven tools into non-STEM

disciplines, such as the humanities, is particularly pressing. As the

case study on integrating AI-powered coding into a literature

course demonstrated, these tools can empower students to engage

with complex digital tasks, such as developing APIs for literary

analysis, that would otherwise be beyond their reach. This not only

enhances the educational experience by providing students with

practical, technical skills but also broadens the scope of what is

possible within humanities education, encouraging a more

interdisciplinary approach to learning.

Moving forward, the case study serves as a model for how AI-

powered coding tools can be used effectively in non-STEM

disciplines, offering a blueprint for educators to adapt and apply in

their contexts. However, further research is necessary to explore

the long-term impacts of these tools on student learning outcomes,

the development of interdisciplinary curricula, and the potential

challenges that may arise in their implementation. Future studies

should focus on evaluating the effectiveness of AI tools in various

educational settings, understanding how they can be optimized for

different learning environments, and exploring the ethical

considerations surrounding their use in education. By continuing to

investigate and refine the use of AI in teaching, educators can

ensure that these tools contribute meaningfully to the evolution of

educational practices and the preparation of students for a rapidly

changing technological landscape.

Data Availability

Data available upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding

the publication of this paper.

Funding Statement

NA

Authors’ Contributions

Conceptualization, D. Plate; Plate, D; Validation, J. Hutson;

Investigation, Plate, D. – Original Draft Preparation, J. Hutson;

Writing – Review & Editing, J. Hutson.; Visualization, J. Hutson.

References

1. Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023).

Transforming education: A comprehensive review of

generative artificial intelligence in educational settings

through bibliometric and content analysis. Sustainability,

15(17), 12983.

2. Betz, C., Olagunju, A. O., & Paulson, P. (2016, September).

The impacts of digital transformation, agile, and DevOps on

future IT curricula. In Proceedings of the 17th Annual

Conference on Information Technology Education (pp. 106-

106).

3. Brynjolfsson, E., Li, D., & Raymond, L. R. (2023).

Generative AI at work (No. w31161). National Bureau of

Economic Research.

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

54

4. Bull, C., & Kharrufa, A. (2023). Generative AI Assistants in

Software Development Education. ArXiv, abs/2303.13936.

https://doi.org/10.1109/MS.2023.3300574

5. Castro, S. (2015). Meeting the ‘T’in STEM through Computer

Science and Coding. PhD diss., California State University.

6. Collen, M. F., & Kulikowski, C. A. (2015). The development

of digital computers. The History of Medical Informatics in

the United States, 3-73.

7. Craig, R. (2019). America's Skills Gap: Why It's Real, and

Why It Matters. Progressive Policy Institute.

8. Dijkstra, E. W. (1996). Edsger W. Dijkstra. Great Papers in

Computer Science, 378.

9. Drucker, J. (2021). The digital humanities coursebook: an

introduction to digital methods for research and scholarship.

Routledge.

10. Dubinsky, Y., & Hazzan, O. (2005). A framework for

teaching software development methods. Computer Science

Education, 15(4), 275-296.

11. Ebert, C., Louridas, P., & Ebert, C. (2023). Generative AI for

Software Practitioners. IEEE Software, 40, 30-38.

https://doi.org/10.1109/MS.2023.3265877

12. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993).

Design patterns: Abstraction and reuse of object-oriented

design. In ECOOP’93—Object-Oriented Programming: 7th

European Conference Kaiserslautern, Germany, July 26–30,

1993 Proceedings 7 (pp. 406-431). Springer Berlin

Heidelberg.

13. Gutiérrez, L. E., Guerrero, C. A., & López-Ospina, H. A.

(2022). Ranking of problems and solutions in the teaching and

learning of object-oriented programming. Education and

Information Technologies, 27(5), 7205-7239.

14. Grütter, F. (2024). After Mainframes: Computer Education

and Microcomputers in Western Switzerland during the 1980s

and 1990s. History of Education, 1-21.

15. Haigh, T., & Ceruzzi, P. E. (2021). A new history of modern

computing. MIT Press.

16. Hamilton, I. & Swanston, B. (2024). Artificial intelligence in

education: teachers’ opinions on AI in the classroom. Forbes

Advisor. Retrieved:

https://www.forbes.com/advisor/education/it-and-

tech/artificial-intelligence-in-school/

17. Hazzan, O., & Erez, Y. (2024, March). Generative AI in

Computer Science Education. In Proceedings of the 55th

ACM Technical Symposium on Computer Science Education

V. 2 (pp. 1899-1899).

18. Holo, O. E., Kveim, E. N., Lysne, M. S., Taraldsen, L. H., &

Haara, F. O. (2023). A review of research on teaching of

computer programming in primary school mathematics:

moving towards sustainable classroom action. Education

Inquiry, 14(4), 513-528.

19. Hordern, J. (2018). Recontextualisation and the education-

work relation. In Knowledge, Curriculum, and Preparation

for Work (pp. 68-88). Brill.

20. Hunter, K. (1988, October). The campus microcenter. In

Proceedings of the 16th annual ACM SIGUCCS Conference

on User Services (pp. 225-228).

21. Hutson, J., & Jeevanjee, T. (2024). Perceptions and

Aspirations of Undergraduate Computer Science Students

Towards Generative AI: A Qualitative Inquiry. Journal of

Biosensors and Bioelectronics Research, 2(3).

22. Jablonický, K., & Lang, J. (2023). Code Based Selected

Object-Oriented Mechanisms Identification. Proceedings

http://ceur-ws. org ISSN, 1613, 0073

23. Jennings, R. A. K., & Gannod, G. (2019, October). Devops-

preparing students for professional practice. In 2019 IEEE

Frontiers in Education Conference (FIE) (pp. 1-5). IEEE.

24. Kasauli, R., Knauss, E., Horkoff, J., Liebel, G., & de Oliveira

Neto, F. G. (2021). Requirements engineering challenges and

practices in large-scale agile system development. Journal of

Systems and Software, 172, 110851.

25. Kavya, N., & Smitha, P. (2022). Deploying and Setting up

Ci/Cd Pipeline for Web Development Project on AWS Using

Jenkins. International Journal of Advanced Engineering

Management, 4(6), 2325-2332.

26. Krismadinata, E., Boudia, C., Jama, J., & Saputra, A. Y.

(2023). Effect of Collaborative Programming on Students

Achievement Learning Object-Oriented Programming Course.

International Journal of Information and Education

Technology, 13(5).

27. Li, H., Huang, B., & Lu, J. (2008, June). Dynamical evolution

analysis of the object-oriented software systems. In 2008

IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence) (pp. 3030-3035).

IEEE.

28. Liang, J., Yang, C., & Myers, B. (2023). Understanding the

Usability of AI Programming Assistants. ArXiv,

abs/2303.17125. https://doi.org/10.48550/arXiv.2303.17125

29. Liberman, N., Beeri, C., & Ben-David Kolikant, Y. (2011).

Difficulties in learning inheritance and polymorphism. ACM

Transactions on Computing Education (TOCE), 11(1), 1-23.

30. Magana, S. (2017). Disruptive classroom technologies: A

framework for innovation in education. Corwin Press.

31. McInnes, L. C., Heroux, M., Bernholdt, D. E., Dubey, A.,

Gonsiorowski, E., Gupta, R., ... & Watson, G. R. (2024). A

cast of thousands: How the IDEAS Productivity project has

advanced software productivity and sustainability. Computing

in Science & Engineering.

32. Megargel, A., Shankararaman, V., & Walker, D. K. (2020).

Migrating from monoliths to cloud-based microservices: A

banking industry example. Software engineering in the era of

cloud computing, 85-108.

https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1109/MS.2023.3265877
https://www.forbes.com/advisor/education/it-and-tech/artificial-intelligence-in-school/
https://www.forbes.com/advisor/education/it-and-tech/artificial-intelligence-in-school/
https://doi.org/10.48550/arXiv.2303.17125

James Hutson; ISAR J Arts Humanit Soc Sci; Vol-2, Iss-9 (Sep - 2024): 44-55

55

33. Melro, A., Tarling, G., Fujita, T., & Kleine Staarman, J.

(2023). What else can be learned when coding? A

configurative literature review of learning opportunities

through computational thinking. Journal of Educational

Computing Research, 61(4), 901-924.

34. Mens, T. (2014). Evolving Software Systems (Vol. 190). A.

Serebrenik, & A. Cleve (Eds.). Heidelberg: Springer.

35. Nagineni, R. B. (2021). A Research on Object Oriented

Programming and Its Concepts. International Journal, 10(2).

36. Nazaretsky, T., Cukurova, M., Ariely, M., & Alexandron, G.

(2021, September). Confirmation bias and trust: human

factors that influence teachers' attitudes towards AI-based

educational technology. In CEUR Workshop Proceedings

(Vol. 3042).

37. Ng, D. T. K., Lee, M., Tan, R. J. Y., Hu, X., Downie, J. S., &

Chu, S. K. W. (2023). A review of AI teaching and learning

from 2000 to 2020. Education and Information Technologies,

28(7), 8445-8501.

38. Rajlich, V. (1997). MSE: A methodology for software

evolution. Journal of Software Maintenance: Research and

Practice, 9(2), 103-124.

39. Ray, B. B., Rogers, R. R., & Hocutt, M. M. (2020).

Perceptions of non-STEM discipline teachers on coding as a

teaching and learning tool: What are the possibilities?.

Journal of Digital Learning in Teacher Education, 36(1), 19-

31.

40. Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., &

Gonzalez-Rodriguez, M. (2023). Empowering education with

generative artificial intelligence tools: Approach with an

instructional design matrix. Sustainability, 15(15), 11524.

41. Saide, M. (2024). Understanding Object-Oriented

Development: Concepts, Benefits, and Inheritance in Modern

Software Engineering. Benefits, and Inheritance in Modern

Software Engineering (July 01, 2024).

42. Sailer, A., & Petrić, M. (2019). Automation and Testing for

Simplified Software Deployment. EPJ Web of Conferences.

https://doi.org/10.1051/EPJCONF/201921405019

43. Santhosh, A., Unnikrishnan, r., Shibu, S., Meenakshi, K., &

Joseph, G. (2023). AI impact on job autonation. International

Journal of Engineering Technology and Management

Sciences. https://doi.org/10.46647/ijetms.2023.v07i04.05

44. Stewart, C. (1994). Distributed systems in the undergraduate

curriculum. ACM SIGCSE Bulletin, 26(4), 17-20.

45. Tseng, W., & Warschauer, M. (2023). AI-writing tools in

education: If you can’t beat them, join them. Journal of China

Computer-Assisted Language Learning, 3(2), 258-262.

46. Weng, X., & Chiu, T. K. (2023). Instructional design and

learning outcomes of intelligent computer assisted language

learning: Systematic review in the field. Computers and

Education: Artificial Intelligence, 4, 100117.

47. Williams, R. (2013). Programming a New Society:

Modularity as an Instrument of Cooperation and Programmer

Autonomy from the 1960s to the Free Software Movement

(Doctoral dissertation, Vanderbilt University. Dept. of

History).

48. Yuan, T., Wang, Z., & Rau, P. L. P. (2023, July). Design of

Intelligent Real-Time Feedback System in Online Classroom.

In International Conference on Human-Computer Interaction

(pp. 326-335). Cham: Springer Nature Switzerland.

49. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur,

F. (2019). Systematic review of research on artificial

intelligence applications in higher education–where are the

educators?. International Journal of Educational Technology

in Higher Education, 16(1), 1-27.

50. Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M.,

& Waseem, M. (2023). On the concerns of developers when

using GitHub Copilot. arXiv preprint arXiv:2311.01020

51. Zohuri, B. (2023). Charting the future. The synergy of

generative AI, quantum computing, and the transformative

impact on economy. Current Trends in Engineering Science,

3(7), 1-4.

https://doi.org/10.1051/EPJCONF/201921405019
https://doi.org/10.46647/ijetms.2023.v07i04.05

	Bridging Disciplines with AI-Powered Coding: Empowering Non-STEM Students to Build Advanced APIs in the Humanities
	Recommended Citation

	tmp.1726063994.pdf.gjKG2

