Changes in Energy Expenditure, Dietary Intake, and Energy Availability Across an Entire Collegiate Women’s Basketball Season: Erratum

Breyannah R. Zanders  
*Lindenwood University*

Brad S. Currier  
*Lindenwood University*

Patrick Harty  
*Lindenwood University*, pharty@lindenwood.edu

Hannah A. Zabriskie  
*Lindenwood University*

Charles R. Smith  
*University of South Carolina - Columbia*

Recommended Citation
https://digitalcommons.lindenwood.edu/faculty-research-papers/528

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers

Part of the Kinesiology Commons

This Article is brought to you for free and open access by the Research and Scholarship at Digital Commons@Lindenwood University. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Digital Commons@Lindenwood University. For more information, please contact phuffman@lindenwood.edu.
Authors
Breyannah R. Zanders, Brad S. Currier, Patrick Harty, Hannah A. Zabriskie, Charles R. Smith, Richard A. Stecker, Scott R. Richmond, Andrew R. Jagim, and Chad Kerksick
Changes in Energy Expenditure, Dietary Intake, and Energy Availability Across an Entire Collegiate Women’s Basketball Season: Erratum

Breyannah R. Zanders,1 Brad S. Currier,1 Patrick S. Harty,1 Hannah A. Zabriskie,1 Charles R. Smith,2 Richard A. Stecker,1 Scott R. Richmond,1 Andrew R. Jagim,1 and Chad M. Kerksick1

1Exercise and Performance Nutrition Laboratory, Department of Exercise Science, School of Health Sciences, Lindenwood University, St Charles, MO; and 2Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SA

In the article “Changes in Energy Expenditure, Dietary Intake, and Energy Availability Across an Entire Collegiate Women’s Basketball Season” (1), which published in Volume 35, Issue 3 of the Journal of Strength & Conditioning Research, energy availability calculations were updated in Table 2.

Table 2
Energy expenditure, energy availability, and energy balance across entire season.*

<table>
<thead>
<tr>
<th>Intake/Phase</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Phase IV</th>
<th>Phase V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total daily energy expenditure (kcal·d⁻¹)</td>
<td>3,065 ± 361</td>
<td>2,866 ± 363</td>
<td>2,850 ± 159</td>
<td>2,674 ± 216†</td>
<td>2,806 ± 419</td>
</tr>
<tr>
<td>Activity energy expenditure (kcal·d⁻¹)</td>
<td>1,196 ± 296</td>
<td>1,252 ± 774</td>
<td>1,028 ± 157</td>
<td>819 ± 160†</td>
<td>969 ± 362</td>
</tr>
<tr>
<td>Physical activity level (PAL)</td>
<td>1.75 ± 0.27</td>
<td>1.63 ± 0.22</td>
<td>1.62 ± 0.15</td>
<td>1.52 ± 0.17†</td>
<td>1.59 ± 0.23</td>
</tr>
<tr>
<td>Energy availability (kJ·kg FFM⁻¹)</td>
<td>91.1 ± 32.7</td>
<td>93.4 ± 57.5</td>
<td>94.3 ± 47.0</td>
<td>133.0 ± 33.9</td>
<td>128.0 ± 39.8</td>
</tr>
<tr>
<td>Energy balance (kcal·d⁻¹)</td>
<td>−767 ± 426</td>
<td>−757 ± 720</td>
<td>−705 ± 642</td>
<td>−212 ± 466</td>
<td>−291 ± 551</td>
</tr>
</tbody>
</table>

*FFM = fat-free mass.
†Different from phase I.

Reference