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Background: Limited research is available on the potential impact of

creatinemonohydrate administration before or after workouts among athletes.

This study aimed to investigate the e�ects of pre- vs. post-exercise

creatinemonohydrate supplementation on resistance training adaptations and

body composition.

Methods: In a randomized, double-blind, placebo-controlled, parallel design,

34 healthy resistance-trained male and female athletes were randomly

assigned and matched according to fat free mass to consume a placebo, or

5-g dose of creatine monohydrate within 1h before training, or within 1h after

training for 8 weeks, while completing a weekly resistance training program.

Participants co-ingested 25-gram doses of both whey protein isolate and

maltodextrin along with each assigned supplement dose. Body composition,

muscular strength, and endurance, along with isometric mid-thigh pull were

assessed before and after the 8-week supplementation period. A 3 × 2 mixed

factorial (group x time) ANOVA with repeated measures on time were used to

evaluate di�erences.

Results: All groups experienced similar and statistically significant increases in

fat free mass (+1.34± 3.48 kg, p = 0.04), upper (+2.21± 5.69 kg, p = 0.04) and

lower body strength (+7.32± 10.01 kg, p< 0.001), and decreases in bodymass

(−1.09 ± 2.71 kg, p = 0.03), fat mass (−2.64 ± 4.16 kg, p = 0.001), and percent

body fat (−2.85 ± 4.39 kg, p < 0.001).

Conclusions: The timing of creatine monohydrate did not exert any additional

influence over the measured outcomes.

KEYWORDS

supplementation, pre-workout, post-workout, peri-workout, strength, endurance,

body composition, fat-free mass
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Introduction

Ergogenic aids are commonly used to improve performance

or augment exercise training adaptations (1, 2). Creatine

monohydrate (1, 3–6) supplementation is well-established for

its ability to increase intramuscular creatine concentration

and its subsequent ergogenic potential as seen by commonly

reported increases in fat-free mass accretion, augmented muscle

morphology changes, and improvements in muscular strength,

endurance, and power (3, 7, 8). Altering the timing of when

nutrients are delivered has been established as a potential

strategy to augment recovery from stressful exercise while

also impacting adaptations to regular exercise training (9).

While the majority of the research regarding the effects of

nutrient timing strategies has centered upon the delivery of

macronutrients (9), interest exists to better understand how the

timing of other micronutrients or single ingredients, such as

creatine monohydrate, may affect recovery and exercise training

adaptations (10). For example, early work (11) demonstrated

that ingesting a combination of carbohydrate + protein +

creatine (Cr) in close proximity (vs. morning and evening

ingestion) to each workout over 10 weeks, elicited greater

increases in intramuscular creatine, lean tissue accretion, cross-

sectional area of type II muscle fibers, and exercise performance

were observed. While this study highlighted the potential

advantage of ingesting creatine in close proximity to a workout,

additional questions remain whether or not ingesting creatine

monohydrate in isolation, before or after exercise sessions, offers

any advantages. In 2013, Antonio and Ciccone (12) conducted a

4-week resistance training and concluded that creatine ingestion

(5 grams) post-exercise led to greater improvements in fat-free

mass and strength when compared to ingesting an identical 5-

gram dose before each workout. Conclusions from this study

were limited, however, due to the short supplementation period,

no placebo group, and the statistical approach employed by

the investigators. Candow et al. later published two separate

investigations in older adults spanning 12 weeks (13) and 8

months (14), respectively, which both reported no differential

impact of creatine timing on resistance training adaptations.

Similarly, a 2021 study by Forbes et al. (15) indicated that Cr

timing did not alter improvements in muscle thickness and

strength after 8 weeks of supplementation (2 days per week

on training days only) while following a unilateral resistance

training program. As it stands, more research is needed to better

investigate the impact of creatine timing on exercise training

adaptations in young, athletic populations over several weeks

of exercise training and supplementation. Therefore, the aim of

the current study was to evaluate the effects of 8 weeks of timed

creatine supplementation on resistance training adaptations in

college-aged male and female athletes. Based upon previous

research which has highlighted an upregulation of anabolic

signaling mechanisms (16) and hyperemia post-exercise (17),

coupled with an increase an insulin sensitivity from the added

carbohydrate (18), we hypothesize that post-exercise creatine

consumption would lead to increased kinetics pertaining to

creatine transport and result in greater improvements in

strength and body composition throughout the study protocol.

Methods

Experimental design

In a double-blind, placebo-controlled, parallel design, study

participants were randomized based upon fat-free mass into one

of three groups to ingest creatine (before or after workouts)

or a placebo daily throughout an 8-week supplementation

period. Study participants were randomized into one of

three supplement groups using block randomization, counter-

balanced for sex, and matched for fat-free mass. Each group

consumed their assigned dose or placebo within 1 h before

exercise or within 1 h following exercise and were recommended

to consume first thing in the morning and in the evening, after

5:00 p.m. hours on non-training days.

All participants completed a 12-week resistance training and

conditioning program. To homogenize neurological responses

to resistance training, a 4-week (no supplementation) run-

in period was completed, prior to participants completing

baseline testing and began the supplementation protocol, while

continuing to follow the resistance training program for an

additional 8 weeks. Before and after the supplementation

and resistance training period, body mass, body water, and

body composition were assessed in addition to changes

in muscular strength, muscular endurance, and lower-body

power (Figure 1). This study was retroactively registered on

ClinicalTrials.gov as NCT05451498.

Study participants

Thirty-four apparently healthy male (n = 18) and female

(n = 16) collegiate athletes (mean ± SD; age = 19.8 ±

1.5 years; height = 175.1 ± 9.7 cm; body mass = 82.5 ±

21.9 kg; body mass index = 26.5 ± 4.8 kg/m2) from women’s

volleyball (n = 3), women’s soccer (n = 13), and football

(n = 18) volunteered to participate in this study. To be

eligible, participants were required to be current members

of the university’s athletic program, participating in their

prescribed off-season resistance training program, between the

ages of 19–30, and medically cleared to participate in their

respective sport. Exclusion criteria included, any individual

who is currently being treated or is diagnosed with a cardiac,

respiratory, circulatory, musculoskeletal, metabolic obesity

(defined as body mass index >35 kg/m2 and body fat >30%),

immune, autoimmune, psychiatric, hematological, neurological,

or endocrinological disorder or disease, anabolic steroid use,
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FIGURE 1

Research design overview.

allergies to milk or soy (lecithin), and are currently pregnant

or become pregnant at any point throughout the study (females

only). Further, participants were required to stop taking any

ergogenic agents (pre-workouts, creatine, protein, beta-alanine,

etc.) 4weeks prior to and throughout the entire study protocol.

A CONSORT diagram is provided in Figure 2 to outline

the enrollment and group allocation process. The experimental

protocol was approved by the Rocky Mountain University of

Health Professions Institutional Review Board on 9 February

2022, with code 2021-28. All participants were informed of their

obligations and risks associated with the study protocol and

provided their written consent on an IRB-approved informed

consent document prior to participation.

Anthropometric assessments

Before each visit, participants were instructed to fast

overnight and abstain from exercise, caffeine, nicotine, and

alcohol for at least 24 h. During the initial assessment,

participant height was assessed to the nearest ± 0.5 cm using a

stadiometer with their shoes removed and standing erect on flat

feet. Bodymass wasmeasured prior to all study visits using a self-

calibrating digital balance (Tanita BWB-627A, Tokyo, Japan)

and was recorded to the nearest± 0.1 kg.

Body composition

A field-based three-compartment (3CFIELD) model was

utilized to estimate body composition and determine fat mass

(FM), fat-free mass (FFM), and total body water (TBW) by

combining estimates of body density (BD) derived from skinfold

measurements, and TBW using bioimpedance spectroscopy

(BIS) (19–21). This combination of methods has been previously

shown to provide more accurate body composition estimates

than if used as individual techniques (20). Further, recent

evidence suggests that minimal differences exist between a 3C

and 4C model (19, 22).

Total body water

To ensure adequate hydration, participants were instructed

to follow a hydration protocol as hydration status was not

assessed prior to testing. Total body water (TBW) was assessed

using bioelectrical impedance spectroscopy (SFB7, Impedimed

Corp., Carlsbad, CA) as previously described (23). Test-

retest reliability using bioelectrical impedance spectroscopy

is available for fat mass (CV: 5.86%, ICC: 0.98, SEM: 280.9

grams) and fat-free mass (CV: 1.72%, ICC: 0.99, SEM: 285.1

grams) in a cohort (n = 40) of healthy college-aged men and

women (23).

Skinfolds

Skinfold measurements were completed on the right side

of the body by the same trained investigator according to the

recommendations by Jackson and Pollock (24). A calibrated

Lange caliper was used to take duplicatemeasurements at each of

the seven sites (chest, mid-axilla, triceps, abdomen, suprailium,
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FIGURE 2

CONSORT diagram.

subscapular, and thigh) for both men and women and used

to estimate body density using the Siri equation (25). Fat-free

mass, fat mass, and body fat percentage then calculated using

a 3C model (20) were recorded. Skinfold technician test-retest

reliability in the current study was CV: 0.35%, ICC: 0.985 (95%

CI: 0.976, 0.991), SEM: 1.37 millimeters.

Isometric mid-thigh pull testing

A standardized warmup consisting of dynamic bodyweight

movements including walking lunges, squats, and leg swings

was completed prior to assessing maximal torque using an

isometric mid-thigh pull (IMTP) as previously described

(23). Study participants completed three, maximal-effort

attempts with 60 s of rest allowed between each attempt.

The highest value was recorded and used for later analysis.

Isometric mid-thigh pull assessments have been shown to be

strongly associated with athletic performance outcomes such

as strength (26, 27), sprint performance (27, 28), and agility

performance (27).

Maximal strength and muscular
endurance

Maximal strength [one-repetition maximum (1 RM)] and

muscular endurance [repetitions to fatigue (RTF) at 80% 1 RM]

were assessed in the following sequence: (a) back squat strength,

(b) back squat endurance, (c) bench press strength, and (d)

bench press endurance. Approximately 5min of rest separated

each assessment. All protocols were consistent with the National

Strength and Conditioning Association (NSCA) and previously

described (27, 28).

Frontiers in Sports andActive Living 04 frontiersin.org

https://doi.org/10.3389/fspor.2022.1033842
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


Dinan et al. 10.3389/fspor.2022.1033842

Resistance training program

As highlighted previously, all study participants completed

12 weeks of resistance training at a frequency of 4 days per

week which was designed and supervised by the university

strength and conditioning coach. The first 4 weeks of resistance

training (16 workouts) commenced before the initiation of

the supplementation period and baseline testing to acclimate

participants and homogenize training responses to the program.

Following the initial 4-week resistance training block, an

additional 8 weeks of resistance training was completed (∼32

workouts) that coincided with the supplementation protocol.

Each workout consisted of mostly multi-joint exercises with

free weights that targeted all major muscle groups [i.e.,

rack/hang cleans, bench press (flat and incline), push press,

rear deltoid rows/pull apart, pendlay rows, low rows, pulldowns,

triceps extensions, bicep curls, back and belt squats, front

and side planks, glute/ham raises, and box/seated jumps].

A progressive overload scheme was followed to facilitate

increases in strength and lean body mass. The program was

divided into three phases: phase 1 (<60–70% 1 RM) for

weeks 1–4, phase 2 (70–80% 1 RM) for weeks 4–8, and

phase 3 (80–95% 1 RM) for weeks 8–12. Attendance was

required daily and compliance was calculated as the percentage

of completed workouts. Participants were deemed compliant

if they completed at least 90% of the assigned workouts

throughout the study protocol.

Dietary protocol

Participants were requested to submit a three-day dietary

intake log two times throughout the study (weeks 0 and 8).

Study participants usedMyFitnessPal (Under Armor, Baltimore,

MD) to create individualized profiles and self-report energy

and macronutrient intake. The 3-day average was computed for

later analysis, however, compliance to completion of the dietary

records was poor with only five of the 34 athletes completing all

requested days.

Supplementation protocol

Two doses of the assigned supplement (or placebo) were

ingested each day by all study participants for 8 weeks.

In a double-blind manner, the PRE group was instructed

to ingest a 5-gram dose of creatine before exercise and a

5-gram dose of placebo (maltodextrin) after exercise. The

POST group ingested a 5-gram dose of placebo (maltodextrin)

before exercise and ingested a 5-gram dose of creatine

after exercise. The PLA group ingested a 5-gram dose of

placebo (maltodextrin) before exercise and a 5-gram dose

of placebo (maltodextrin) after exercise. All doses were

ingested 1 h before exercise and within 1 h after exercise.

On non-training days, participants ingested the assigned

supplement dose first thing in the morning (immediately

upon waking) and their other assigned dose after 5:00 p.m.

Participants consumed each assigned supplement along with

a 25-gram dose of whey protein isolate and a 25-gram dose

of carbohydrate powder. The carbohydrate and protein were

added to aid in blinding, promote compliance, and facilitate

optimal exercise training adaptations throughout the study

protocol. Compliance to the supplementation regimen was

not monitored as the principal investigator and the head

strength and conditioning coach were able to communicate

daily with participants regarding their compliance to the

study protocol.

All supplements were provided to participants in

powder form and were of similar texture, bitterness,

appearance, and sweetness. All supplements were weighed

and blinded by research personnel not involved in

testing. The whey protein isolate and maltodextrin were

provided by Argopur Dairy Cooperative (La Crosse, WI)

and the creatine was provided by 1st Phorm, LLC (St.

Louis, MO).

Adverse event reporting

The occurrence of adverse events was collected through

spontaneous reporting by the study participants or the

interaction of the principal investigator with study participants.

When participants reported adverse events, they reported the

frequency as well as the severity (“mild”, “moderate”, “severe”)

of any adverse event.

Statistical analysis

All analyses were completed using Microsoft Excel and

the Statistical Package for the Social Sciences (v23; SPSS Inc.,

Chicago IL). Data were considered statistically significant when

the probability of a type I error was 0.05 or less. Primary

endpoints for this investigation were changes in fat-free mass

and back squat 1 RM. Secondary endpoints were fat mass, %

fat, total body water, bench press 1 RM, bench press repetitions

to fatigue, and back squat repetitions to fatigue. A 3 × 2

mixed factorial (group× time) ANOVA with repeated measures

on time were used to determine any statistically significant

differences for time and group main effects and group ×

time interaction effects. All data are presented as means ±

standard deviations and the presence of any statistical outlier

was evaluated by Grubbs’ test and removed from analysis.

Reliability statistics were determined using intraclass correlation

and agreement between Pearson correlations.
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Results

Participants

Of the 47 participants who were randomized and enrolled in

the study, eight (PRE = 2, POST = 4, PLA = 2) withdrew due

to personal reasons unrelated to the study, and one participant

was non-compliant with the protocol (PLA = 1). An additional

four participants (PRE= 2, PLA= 2) withdrew due to undesired

side effects relating to weight gain that were possibly related to

supplementation. In total, 34 participants completed the study

and were included in the final analysis (PRE = 12; POST =

11; PLA = 11). Final compliance with recording their workout

information was 90.4% for PRE-group, 94.5% for POST-group,

and 93.3% for PLA-group.

Adverse events

Throughout the study, 17 adverse events were reported (13

were abdominal symptoms, three were nausea, and one was due

to periodic headaches). Of these, n = 9 were mild, n = 7 were

moderate, n = 1 severe. The severe adverse event (POST = 1)

was related to dizziness but was determined to not be related to

the study. All adverse events were resolved by the end of the first

2 weeks. One participant who reported an adverse event (PLA=

1) withdrew due to reasons directly related to supplementation.

Baseline di�erences

One-way ANOVA on pre-supplementation data indicated

no baseline differences (p > 0.05) between groups for age (p =

0.21), height (p = 0.36), body mass (p = 0.69), body mass index

(p = 0.76), % body fat (p = 0.26), fat-free mass (p = 0.73), back

squat 1RM (p = 0.69), bench press 1 RM (p = 0.63), and IMTP

peak force (p= 0.55).

Dietary intake

Dietary data were collected during the first (PRE = 4;

POST = 6, PLA = 4) and final (PRE = 3; POST = 2; PLA

= 1) week of supplementation. Using a One-way ANOVA, no

differences in dietary intake (i.e., total energy, carbohydrate, fat,

and protein; Supplementary Table 1) were observed at baseline

between groups for energy and macronutrient intake. Due to

limited post-protocol data, paired-samples t-test were utilized to

determine changes from baseline. No differences were observed

between data points across time (p > 0.05). Similar outcomes

were revealed when all data were represented relative to body

mass (Supplementary Table 1).

FIGURE 3

Change in fat-free mass (Week 8 - Week 0) in kilograms. Cr Post,

Post-exercise creatine supplementation; Cr Pre, Pre-exercise

creatine supplementation; PLA, Placebo supplementation. For

each respective shape, the filled shapes (�N•) are female

participants, and the non-filled shapes (△ ◦�) are male

participants.

Anthropometrics and body water

Supplementary Table 2 presents bodymass, total body water,

intracellular water (ICW), extracellular water (ECF), and body

composition changes. No significant (p > 0.05) group ×

time interaction effects were observed for body mass, body

mass index, body water compartments, or body composition

parameters. Main effects for time were observed for body mass

(p= 0.03, ηp2= 0.15), body mass index (p= 0.03, ηp2= 0.15),

total body water (p = 0.02, ηp2 = 0.18) and intracellular water

(p= 0.006, ηp2= 0.22).

Body composition

No significant group × time interaction effects were

observed for fat-free mass (p = 0.11), fat mass (p = 0.33), and

% body fat (p = 0.38). Main effects for time were observed

for fat free mass (Figure 3) (p = 0.02, ηp2 = 0.17), % fat (p

< 0.001, ηp2 = 0.35), and fat mass (p < 0.001, ηp2 = 0.33)

(Supplementary Table 2).
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FIGURE 4

Change in squat 1RM performance (Week 8 - Week 0) in

kilograms. Cr Post, Post-exercise creatine supplementation; Cr

Pre, Pre-exercise creatine supplementation; PLA, Placebo

supplementation. For each respective shape, the filled shapes

(�N•) are female participants, and the non-filled shapes (△ ◦�)

are male participants.

Exercise performance

Muscular strength and endurance

As seen in Supplementary Table 3, no significant (p > 0.05)

group x time interaction effects were observed for any back

squat or bench press performance parameters. Significant main

effects for time were observed for back squat 1RM (p < 0.001,

ηp2 = 0.35), back squat 1RM normalized to body mass (p

< 0.001, ηp2 = 0.45), bench press 1RM (p = 0.04, ηp2 =

0.13), and bench press 1RM normalized to body mass (p <

0.001, ηp2 = 0.32), while no significant (p > 0.05) changes

over time were observed for any other performance parameter

(Supplementary Table 3). Finally, total resistance training load-

volume (sets × reps × load) was calculated for the entire 8-

week protocol. No significant differences between groups were

found for total load-volume (PRE: 58,505± 35,887 kg vs. POST:

88,873 ± 58,672 kg vs. PLA: 70,408 ± 43,928 kg, p = 0.32, ηp2

= 0.07).

Discussion

The purpose of this investigation was to examine the

effects of timed creatine monohydrate supplementation

(pre- vs. post-exercise) on resistance training adaptations

in college-aged male and female athletes. Results from this

investigation indicated that timing of creatine monohydrate

exerted no further change in key outcomes such as fat-free mass

(p = 0.11, Figure 3) and back squat 1RM (p = 0.87, Figure 4) in

addition to other performance and body composition variables

(see Supplementary Tables 2, 3). Beyond this observation,

we also reported significant improvements in several body

composition and performance variables, which provide sound

evidence that the training program and supplementation

provided throughout this study instigated changes in all study

participants from baseline. Overall, the key findings from the

present investigation indicate that the ingestion, nor the timing,

of creatine monohydrate in combination with carbohydrate and

whey protein did not exert any influence on performance or

body composition outcomes in healthy, college-aged male and

female athletes following 8-weeks of resistance training.

The primary rationale for this investigation was based

upon the combined tenets of creatine supplementation (3,

29) and nutrient timing (9). In this respect, previous

research has established the efficacy of combining creatine

supplementation with resistance training (3, 7, 8, 30, 31) for

its ability to augment adaptations over time, while several

investigations and reviews have highlighted the potential impact

of nutrient timing (9–11, 32–34). Currently, a small number

of original investigations have explored the potential efficacy of

timed creatine monohydrate administration, displaying mixed

outcomes. In this respect, a recent review paper that discussed

creatine timing (35) included six studies, with only two studies

providing some level of evidence for heightened adaptations

in regards to the manipulation of when creatine was ingested,

in favor of post-exercise Cr supplementation (as compared

to pre-exercise) (12, 14). From these studies, one should

consider that the Candow study (14) was completed in elderly

individuals, which limits its generalizability to younger, athletic

populations and the primary population upon which the efficacy

of creatine supplementation has been built. Moreover, the

Antonio study (12), while completed in healthy active men,

lasted 4 weeks in duration, had no placebo group, employed

a liquid creatine formulation with no loading phase, did not

assess body composition or lower-body performance changes,

and used magnitude-based inferences; a statistical approach that

has been challenged by some scientific journals and statisticians

(36–38). Outside of these two investigations, the remaining

studies have failed to identify any differences in resistance

training adaptations between pre- vs. post-exercise consumption

of creatine monohydrate. Therein, the results from the present

investigation are in agreement with those studies which did

not identify any added benefit of ingesting a daily dose of

creatine monohydrate either before or after resistance exercise

and therefore does not support our hypothesis. It is possible that

the post-exercise hyperemia (17) and purported enhancement of

creatine transport via increased insulin sensitivity (18) was not
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sufficient to elicit meaningful differences in measured outcomes

over time; however, more work is needed to identify the specific

mechanism of action.

Results from the present investigation also indicate that a

daily dose of creatine monohydrate did not exert any additional

benefit for improvements in body composition or performance

outcomes, when compared to the placebo group; in the presence

of provisional protein and carbohydrates. While somewhat

unexpected due to the widespread literature supporting the

benefits of creatine, the exclusion of a loading phase in our

study as well as the co-ingestion of carbohydrate and protein

on two occasions each day, may have limited the ability to

discern differences between groups over the time frame within

which our study was completed. In this respect, a loading

phase is commonly employed with creatine monohydrate

supplementation studies, with the goal of robustly increasing

intramuscular phosphocreatine levels by 20–40% in a 5–7-day

time period (39). We chose not to employ a loading phase due

to the challenges associated with how to execute a loading phase,

while also maintaining the blinding and timing intervention that

was central to this project’s aim. Previous work by Hultman et al.

(39) has shown that after ∼28 days of single 5-gram doses of

creatine intramuscular creatine is significantly increased, which,

in the present study, should have allowed for an additional 4

weeks to examine if the timing of creatine was relevant. Another

key consideration was that we decided to provide two daily

doses of 25 grams of maltodextrin carbohydrate and 25 grams

of whey protein isolate, which provided an additional 50 grams

of carbohydrate and 50 grams of whey protein isolate per day to

all study participants. This decision was made for three primary

reasons. First, to help ensure each participant was provided

with an efficacious dose of essential amino acids and energy

to promote an anabolic environment throughout the study

protocol. Previous research has demonstrated that essential

amino acids (EAA), in optimal dosages, maximally stimulates

rates of muscle protein synthesis, particularly when ingested in

close proximity to a resistance-training bout, and also that the

presence of CHO may further enhance this response (8, 40, 41).

Moreover, when creatine is added to whey protein, studies have

indicated that a greater improvement in lean mass may occur

when compared to whey protein or CHO alone (42). Thus, it

is possible that any additional ergogenic potential derived from

creatine administration was clouded by co-ingestion of protein

and carbohydrates and the absence of a loading phase. Certainly,

one could point to the findings of Cribb and Hayes (11) to refute

our suggestion that added carbohydrate and protein clouded

our ability to identify creatine-mediated changes, but the dosing

regimen provided by Cribb and Hayes also delivered over two

times the amount of creatine each day as what was delivered

in the present study, which likely maximized intramuscular

creatine much quicker than the dosing regimen utilized in the

current study. The inclusion of a true control group in the Cribb

study could have helped to further explore this possibility. The

second reason for co-ingestion of carbohydrates and protein

was to aid in blinding the administration of either creatine

monohydrate or the placebo to our study participants. The third

and final reason was to improve recruitment efforts, whereby

all participants were minimally provided two daily doses of

carbohydrates and protein to help maximize the potential

for augmented training outcomes as no other compensation

was provided.

The overall training outcomes realized by the resistance

training program from the current study were largely consistent

with other commonly reported training adaptations following

off-season strength and conditioning programs in the literature

(43–47). In this regard, main effects over time were observed,

which illustrated improvements in upper- (2.8%) and lower-

body strength (7.3%), as well as positive adaptations to several

body composition outcomes including fat-free mass, fat mass,

percent fat, and total body water. The decrease in body mass

was somewhat unexpected, but the positive changes in fat-free

mass, fat mass, and percent body fat do align with the observed

changes in body mass.

Several strengths are evident from the present study

starting with the randomized, double-blind, placebo-controlled

approach, with more study participants per group than what has

been previously reported in the literature (12, 13, 15). Another

key strength was the 4-week period of resistance training that

occurred in all supplementation groups prior to initiation of

the supplementation protocol. This decision was made due to

the variety of ages and genders of participants in the present

study. While it is acknowledged that 4 weeks of training does

not replace the neuromuscular adaptation observed with more

advanced training ages, the younger training ages of some

of the study participants did likely benefit from this period

of resistance training. Certainly, our study was not without

limitations. Most notably was our extremely poor compliance

to recording of dietary intake. As mentioned previously in

the paper and despite repeated reminders and efforts by the

research team to complete food records, we are left with very

limited data to quality dietary intake throughout the study.

While we are encouraged by the significant main effects of time

observed for fat-free mass accretion in all groups (Figure 3),

we are not able to communicate how the quality of the

diet consumed did or did not further support these observed

changes. Thus, the reader is strongly encouraged to consider

this when evaluating our findings and conclusions. Future

research should seek ways to maximize dietary intake reporting

by their study cohorts. The lack of dual x-ray absorptiometry

(DEXA) to assess body composition would have provided a

more robust body composition measure [i.e., four compartment

(4C) model], although some have argued there is minimal

difference between a 3C (used in the present study) and 4C

model (19, 22). The low compliance regarding dietary intake

logs was another shortcoming of the current study. Additionally,

no measure of hydration status was taken, although participants
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were strongly encouraged to follow a hydration protocol before

testing sessions. Lastly, no measures of initial creatine levels,

muscle fiber morphology, blood flow kinetics, muscle cross-

sectional area, myogenic transcription factors, or hormonal

properties were measured in the current study as one or all of

these measures would have helped to mechanistically explain

some of our findings.

In conclusion, the current investigation examined

the impact of 8 weeks of timed creatine monohydrate

supplementation (pre-exercise vs. post-exercise) on resistance

training adaptations in college-aged male and female athletes.

It was revealed that the timing of creatine monohydrate in

combination with carbohydrate and whey protein did not exert

any differential effects for performance or body composition

outcomes in healthy, college-aged men and women.
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