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Abstract

LGD-4033, a selective androgen receptor modulator, and MK-677, a growth

hormone secretagogue, are being used increasingly amongst recreationally active

demographics. However, limited data exist describing their effects on health- and

androgen-related biomarkers. The purpose of this case study was to determine

changes in body composition and biomarkers during and after continued co-

administration of LGD-4033 and MK-677. We also aimed to examine muscular

strength and intramuscular androgen-associated biomarkers relative to non-users.

A 25-year-old male ingested LGD-4033 (10 mg) and MK-677 (15 mg) daily for

5 weeks. Blood and body composition metrics were obtained pre-, on- and post-

cycle. One-repetition maximum leg and bench press, in addition to intramuscular

androgens and androgen receptor content, were analysed on-cycle. We observed

pre- to on-cycle changes in body composition (body mass, +6.0%; total lean body

mass, +3.1%; trunk lean body mass, +6.6%; appendicular lean body mass, +4.3%;

total fat mass, +15.4%; trunk fat mass, +2.8%; and appendicular fat mass, +14.8%),

bone (bone mineral content, −3.60%; area, −1.1%; and bone mineral density, −2.1%),

serum lipid-associated biomarkers (cholesterol, +14.8%; triglycerides, +39.2%; low-

density lipoprotein–cholesterol, +40.0%; and high-density lipoprotein–cholesterol,

−36.4%), liver-associated biomarkers (aspartate aminotransferase, +95.8%; and

alanine aminotransferase, +205.0%) and androgen-associated biomarkers (free

testosterone,−85.7%; total testosterone,−62.3%; and sex hormone-binding globulin,

−79.6%); however, all variables returned to pre-cycle values post-cycle, apart from

total fat mass, appendicular fat mass, bone area, total cholesterol and low-density

lipoprotein–cholesterol. Follicle-stimulating hormone was below clinical reference

values on- (1.2 IU/L) and post-cycle (1.3 IU/L). Intramuscular androgen receptor

(−44.6%), testosterone (+47.8%) and dihydrotestosterone (+34.4%), in addition to

one-repetition maximum leg press and bench press (+39.2 and +32.0%, respectively),

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1468 CARDACI ET AL.

were different in the case subject compared with non-users. These data demonstrate

that LGD-4033 and MK-677 increase several body composition parameters, whilst

negatively impacting bone and several serum biomarkers. Given the sparsity of data

in recreationally using demographics, further research is warranted to elucidate the

acute and chronic physiological effects of these anabolic agents.

KEYWORDS

androgen receptor, ergogenic aid, growth hormone secretagogue, ibutamoren, ligandrol, muscle
strength, performance-enhancing drug, selective androgen receptor modulator, testosterone

1 INTRODUCTION

Selective androgen receptor modulators (SARMs) are a class of

engineered anabolic compounds that bind differentially to the

androgen receptor (AR) and alter receptor function (Christiansen

et al., 2020; Machek, Cardaci et al., 2020; Solomon et al., 2019). They

are posited to exert potent anabolic effects in skeletal muscle and

bone (Bhasin & Jasuja, 2009; Narayanan et al., 2018), whilst lacking

the undesired androgenic-related side effects (testicular atrophy, fluid

retention, hypertension, gynecomastia, alopecia, decreased libido,

etc.) commonly associated with anabolic androgenic steroids (Davani-

Davari et al., 2019; Efimenko et al., 2021; Rahnema et al., 2014; van

Amsterdam et al., 2010). This is primarily attributable to the tissue-

selective nature of these compounds along with their limited ability

to cross-react with other steroid receptors, aromatize to estradiol

or reduce to dihydrotestosterone. For this reason, SARMs continue

to be investigated in several clinical conditions, including sarcopenia,

cachexia and osteoporosis, in addition to other androgen-related

conditions, including urinary incontinence and prostate cancer (Bhasin

& Jasuja, 2009; Kadekawa et al., 2020; Komrakova et al., 2020; Nyquist

et al., 2021; Srinath&Dobs, 2014). LGD-4033 (also known as ligandrol)

is a highly selective non-steroidal SARM with relatively high binding

affinity that has been investigated in multiple preclinical and clinical

models (Basaria et al., 2013; Fragkaki et al., 2018). Recently, however,

recreational use of LGD-4033 and other SARMs has increasedwithout

evidence supporting their utility or safety (Efimenko et al., 2021;

Hilkens et al., 2021; Machek, Cardaci et al., 2020; Shimko et al., 2021).

Furthermore, these compounds are rarely taken in isolation or at

previously studied clinical doses.

In some recreational settings, growth hormone secretagogues

(GHSs), a class of compounds developed to stimulate the secretion

of growth hormone (GH), can be co-administered with SARMs to

‘maximize’ anabolism (Sigalos & Pastuszak, 2018; Sinha et al., 2020).

Once released into the circulation,GHstimulates the release of insulin-

like growth factor 1 by the liver to induce anabolic signalling in peri-

pheral tissues, notably skeletal muscle (Velloso, 2008). Additionally,

GH can activate the GH receptor and elicit diverse downstream intra-

cellular signalling (Carter-Su et al., 2016; Velloso, 2008). Similar to

SARMs, GHSs are being investigated to treat a variety of muscle-

wasting conditions (Conte et al., 2017; Murphy et al., 1998; Sigalos

& Pastuszak, 2018); however, their recreational safety and utility are

not well understood. MK-677 (also known as ibutamoren) is an orally

active non-peptide mimic of GH-releasing peptide, which has shown

promise as an anabolic and therapeutic agent (Murphy et al., 1998;

Nass et al., 2008; Svensson et al., 1998); nevertheless, currently no

data exist supporting its safety andefficacywhen co-administeredwith

SARMs.

Although several investigations (Adunsky et al., 2011; Chapman

et al., 1997; Dobs et al., 2013; Svensson et al., 1998; Yuan et al., 2021)

and comprehensive reviews (Advani et al., 2018; Bhasin& Jasuja, 2009;

Christiansenet al., 2020;Machek,Cardaci et al., 2020;Narayananet al.,

2018; Sigalos & Pastuszak, 2018; Sinha et al., 2020; Solomon et al.,

2019) have illustrated SARM- and GHS-specific safety and efficacy

in clinical settings, there is a paucity of literature evaluating their

implications in otherwise healthy individuals. Incidentally, SARM and

GHS co-administration in recreational athletes has recently grown in

popularity, with the aim of enhancing aesthetics, athletic performance

andmuscular strength (Efimenko et al., 2021; Hilkens et al., 2021; Holt

& Ho, 2019; Shimko et al., 2021). This phenomenon is of particular

concern because we are unaware of any data that examine the

co-administration of these compounds, either in general or at the

relatively large doses commonly taken by recreational users (Van

Wagoner et al., 2017).

The purpose of this case study is to report longitudinal changes

in body composition and in circulating androgen- and health-related

biomarkers in an individual chronically co-administering the SARM

LGD-4033 and the GHS MK-677, both during and 4 weeks after the

cessation of use. We also aimed to examine the muscular strength

of this subject cross-sectionally, alongside skeletal muscle androgenic

hormone and receptor concentrations comparedwith non-users.

2 METHODS

2.1 Subject

A resistance exercise-trained male (age, 25.3 years; height, 178 cm;

and training age, 8.8 years) participated in this case report. The sub-

ject self-administered 10 mg of LGD-4033 and 15 mg of MK-677 daily

for 5 weeks. Comprehensive blood analyses and body composition

testing were performed before (pre-cycle), immediately after 5 weeks

of continuous use (on-cycle) and 4 weeks after cessation (post-cycle)
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CARDACI ET AL. 1469

of LGD-4033 and MK-677 use. Excision of skeletal muscle tissue and

muscular strength testing were conducted cross-sectionally while the

subject was on-cycle. For collection of body composition metrics and

biospecimens, the subject was instructed to report to the laboratory

upon waking in a rested, fasted and euhydrated state after refraining

from exercise for 48 h. Methods of sample collection were approved

by the Institutional Review Board for Human Subjects at Baylor

University, and informed consent was obtained from the participant.

All procedures in the study conformed to the ethical considerations of

theDeclaration of Helsinki.

2.2 Body composition

Total body mass (BM; in kilograms) and height (in centimetres) were

determined on a dual-beam balance scale (Detecto, Bridgeview, IL,

USA). Total body water (TBW; in litres and as a percentage) was

assessed via bioelectrical impedance analysis (Tanita, Tokyo, Japan).

Bone mineral content (BMC; in kilograms) and density (BMD; in

grams per centimetre squared), bone area (in centimetres squared),

trunk/appendicular lean mass (in kilograms), trunk/appendicular fat

mass (in kilograms) and visceral adipose tissue area (in centimetres

squared) were determined using dual-energy X-ray absorptiometry

(DEXA) (Hologic Discovery Series W, Waltham, MA, USA). A four-

compartment model was used to calculate total fat mass (FM; in

kilograms) and total lean body mass (LBM; in kilograms) using DEXA-

derived body volume (Smith-Ryan et al., 2017; Tinsley, 2018).

2.3 Muscular strength testing

To determinemuscular strength, the subject performed one-repetition

maximum (1RM) tests for barbell bench press and 45◦-angled leg

press (Nebula Fitness Equipement, Scottsdale, AZ, USA) as previously

described by researchers in our laboratory (Cardaci et al., 2020) and in

accordance with the National Strength and Conditioning Association

(NSCA) guidelines (Haff & Triplett, 2015). The subject refrained from

exercise for 48 h before testing. The 1RM was recorded as the

maximumweight that the participant was able to lift for one repetition

for each exercise. A goniometer was used to establish 90◦ of knee

flexion on the leg press, and a marker placed corresponding to that

depth was used to enforce the full range of motion on each repetition.

2.4 Venipuncture and blood analyses

Antecubital venous blood samples were taken into 10 ml vacutainer

tubes using a 21-gauge phlebotomy needle. Comprehensive blood

analyses (complete blood count, metabolic, lipid, and androgen-

associated markers) were analysed by a Clinical Laboratory

Improvement Amendments-certified laboratory. Blood data were

collected pre-cycle, on-cycle and post-cycle. All pre-cycle blood

analyses were provided retrospectively. Follicle-stimulating hormone

(FSH) and luteinizing hormone (LH) were not assessed pre-cycle;

New Findings

∙ What is themain observation in this case?

Co-administration of LGD-4033 and MK-677

increased body mass, lean mass and fat mass,

while negatively impacting bone, serum lipids,

liver enzymes, testosterone (total and free) and,

probably, follicle-stimulating hormone.

∙ What insights does it reveal?

Our cross-sectional data imply that these

compounds might alter intramuscular androgenic

hormone and receptor concentrations along with

promotingmuscular strength, when compared with

previously published data from trainedmales.

however, these hormones were assessed on- and post-cycle to infer

potential decrements in upstream hypothalamic–pituitary–gonadal

activity (Machek, Cardaci et al., 2020).

2.5 Skeletal muscle biopsy and tissue processing

A single muscle sample was obtained in a fasted and rested state via

percutaneous muscle biopsies (total ∼30 mg) from the middle portion

of the vastus lateralis muscle of the dominant leg (midpoint between

thepatella andgreater trochanter) at a depthbetween1and2cmusing

a 14-gauge TRU-CORE 1 automatic biopsy instrument (Angiotech,

Medical Device Technologies, Gainesville, FL, USA) after subcutaneous

administration of local anaesthetic (1ml of 1% lignocaine/xylocaine) as

previously performed by our laboratory (Cardaci et al., 2021; Hwang

et al., 2020; Machek, Hwang et al., 2020; Wilburn, Machek, Cardaci,

Hwang et al., 2020, 2020). After removal, adipose tissue was trimmed

from the muscle specimens and they were immediately frozen and

stored at−80◦C for later analysis. Themuscle samplewasweighed and

homogenized using a commercial tissue extraction reagent (Invitrogen

Corporation, Camarillo, CA, USA). Total muscle protein was isolated

and supplemented with a protease inhibitor cocktail (Sigma Chemical

Company, St. Louis, MO, USA) with broad specificity for the inhibition

of serine, cysteine and metalloproteases. Total muscle protein content

was analysed in duplicate and determined spectrophotometrically at

a wavelength of 750 nm (Bio-Rad, Hercules, CA, USA) using bovine

serum albumin as the standard.

2.6 Intramuscular androgenic hormone and
receptor analyses

Intramuscular total AR, testosterone and dihydrotestosterone

concentrations were assessed using commercially available enzyme-

linked immunosorbent assay (ELISA) kits (MyBioSource, San Diego,

CA, USA; Eagle Biosciences, Nashua, NH, USA). The specificities

 1469445x, 2022, 12, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090741 by L
indenw

ood U
niversity, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1470 CARDACI ET AL.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

F IGURE 1 Anthropometric and body composition-associated parameters pre-, on- and post-cycle following co-administered LGD-4033 and
MK-677.

of total AR, testosterone and DHT ELISA kits were all 100%, with

the sensitivity estimated to be 0.1 ng/ml, 0.018 pg/ml and 6 pg/ml,

respectively. The sample was analysed in duplicate, and absorbances

were determined at a wavelength of 450 nm using a microplate

reader (iMark, Bio-Rad, Hercules, CA, USA) against known standard

curves. Final concentrations were expressed relative to total protein

concentration.

3 RESULTS

3.1 Body composition

There was an increase from pre- to on-cycle in BM (+6.0%;

Figure 1a), total LBM (+3.1%; Figure 1d), trunk LBM (+6.6%;

Figure 1e), appendicular LBM (+4.3%; Figure 1f), total FM (+15.4%;

Figure 1j), trunk FM (+2.8%; Figure 1k), appendicular FM (+14.8%;

Figure 1l) and TBW (+2.5%; Figure 1b). A decrease from on- to

post-cycle was observed in BM (−5.7%; Figure 1a), total LBM

(−2.8%; Figure 1d), trunk LBM (−6.7%; Figure 1e), appendicular LBM

(−2.9%; Figure 1f) and TBW (−2.1%; Figure 1b), while trunk FM

increased further (+1.9%; Figure 1k) and total FM (−6.7%; Figure 1j)

and appendicular FM (−1.0%; Figure 1l) decreased, albeit not to

pre-cycle levels. The BMC (−3.6%; Figure 1g), bone area (−1.1%;

Figure 1h) and BMD (−2.1%; Figure 1i) decreased from pre- to on-

cycle. From on- to post-cycle, BMC (+3.02%; Figure 1g) and BMD

(+2.9%; Figure 1i) returned to near pre-cycle values, whereas bone

area (+0.1%; Figure 1h) did not. Visceral adipose tissue area increased

from pre- to on-cycle (+4.0%; Figure 1m) and increased further from

on- to post-cycle (+13.6%; Figure 1m).

3.2 Blood biomarkers

Increases were observed from pre- to on-cycle in total cholesterol

(+14.8%; Table 1), triglycerides (+39.2%; Table 1) and low-density

 1469445x, 2022, 12, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090741 by L
indenw

ood U
niversity, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CARDACI ET AL. 1471

TABLE 1 Pre-, on- and post-cycle comparison of comprehensive analysis of serum biomarker values

Marker Units

Reference

range Pre-cycle On-cycle Post-cycle

White blood cells ×103/µl 3.6–9.9 5.3 5.8 4.7

Red blood cells ×106/µl 4.32–5.71 5.33 5.06 5.24

Hemoglobin g/dl 13–16.6 15.4 14.9 14.9

Haematocrit % 40–49 47.9 44.4 46.1

Platelet count ×103/µl 158–384 167 234 157a

Mean corpuscular volume fl 76–98 90 87.7 88

Mean corpuscular haemoglobin pg 26.7–33.2 28.9 29.4 28.4

Mean corpuscular haemoglobin

concentration

g/dl 32.3–36.1 32.2a 33.6 32.3

Red cell distributionwidth % 12–14.8 13.4 13.1 12.3

Neutrophils % 38–73 50.2 46.3 48

Lymphocytes % 17–48 30.7 37.4 38.8

Monocytes % 6.0–13.0 17b 13.4b 11.1

Eosinophils % 1.0–8.0 1.3 2.4 1.5

Basophils % 0–1 0.6 0.5 0.6

Fasting glucose mg/dl 70–100 100 98 95

Blood urea nitrogen mg/dl 9–25 15 17 24

Creatinine mg/dl 0.67–1.17 1.14 1.05 1.26b

Sodium mmol/L 136–145 140 138 139

Potassium mmol/L 3.5–5.1 4.5 5.0 4.1

Chloride mmol/L 100–109 101 99a 101

Carbon dioxide mmol/L 21–32 28 27 28

Calcium mg/dl 8.5–10.1 9.0 9.3 9.2

Total protein g/dl 6.7–8.4 6.6a 6.7 6.9

Albumin g/dl 3.4–5.0 4.6 4.2 4.4

Globulin g/dl 1.9–3.7 2.0 2.5 2.5

Total bilirubin mg/dl 0.20–1.0 0.4 0.3 0.5

Alkaline phosphatase U/L 45–117 55 41a 58

Aspartate aminotransferase U/L 0–35 24 47b 25

Alanine aminotransferase U/L 7–56 20 61b 29

Glomerular filtration rate, calculated ml/min/1.73m2
>60 89 98 79

Total cholesterol mg/dl <200 155 178 177

Total triglyceride mg/dl <150 51 71 73

High-density lipoprotein–

cholesterol

mg/dl >39 55 35a 50

Low-density lipoprotein–cholesterol mg/dl <100 90 126b 111b

Total testosterone ng/dl 250–827 639 241a 659

Free testosterone pg/ml 30.6–152.0 148 85.7 148.1

Sex hormone-binding globulin nmol/L 14.55–94.64 29.9 6.1a 31.9

Follicle-stimulating hormone IU/L 1.5–12.4 Not assessed 1.2a 1.3a

Luteinizing hormone IU/L 1.2–8.6 Not assessed 4.6 5.4

aLower than standard clinical reference range.
bHigher than standard clinical reference range.
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1472 CARDACI ET AL.

(a) (b)

(d) (e)

(c)

F IGURE 2 Cross-sectional comparison between the case subject and a previously described healthy, recreationally trainedmale population
with regard to intramuscular androgen targets and to leg and bench press strengthmetrics (Cardaci et al., 2020). Abbreviations: 1RM,
one-repetitionmaximum; NORM, values from the literature; SARM, values from the present subject. The ‘NORM’ values are shown as the
mean (±SEM).

lipoprotein–cholesterol (above reference value; +40.0%; Table 1) and

remained elevated post-cycle. High-density lipoprotein–cholesterol

decreased from pre- to on-cycle (below reference value; −36.4%;

Table 1) and returned to near baseline values post-cycle. Aspartate

aminotransferase (+95.8%; Table 1) and alanine aminotransferase

displayed an increase from pre- to on-cycle (+95.8 and +205.0%,

respectively; both above reference value; Table 1), which subsequently

returned to near baseline post-cycle. A decrease in total testosterone

(below reference value; −62.3%; Table 1), free testosterone (−85.7%;

Table 1) and sex hormone-binding globulin (SHBG; below reference

value; −79.6%; Table 1) from pre- to on-cycle was observed, and

all returned to near baseline values post-cycle. Follicle-stimulating

hormone was below reference values on- (1.2 IU/L; Table 1) and post-

cycle (1.3 IU/L; Table 1), while LH was within the reference range. All

othermetabolic, immune and haematologicalmarkers assessed did not

change notably over time (Table 1).

3.3 Muscular strength and intramuscular
androgenic hormone and receptor content

In comparison to our previously published data in resistance-trained

non-users (Cardaci et al., 2020), intramuscular AR content was less

(−44.6%; Figure 2a), whereas intramuscular testosterone (Figure 2c)

and dihydrotestosterone (Figure 2b) were greater (+47.8 and+34.4%,

respectively) in the case subject. Moreover, 1RM leg press (Figure 2d)

and bench press (Figure 2e) were notably greater (+39.2 and +32.0%,

respectively) in the user compared with these previously published

data in non-users.

4 DISCUSSION

In this case report, we document the pattern of change in body

composition along with health- and androgen-related biomarkers in

a resistance-trained male self-administering 10 mg of LGD-4033 and

15 mg of MK-677 daily for 5 weeks. Additionally, these data are

the first to cross-sectionally report the intramuscular androgenic

hormone and receptor concentrations of an individual while ingesting

these compounds. Our data consequently indicate that LGD-4033

and MK-677 co-administration increased body mass, lean body

mass and fat mass while negatively impacting BMD, in addition

to serum lipids, liver enzymes, testosterone (total and free) and,

likely, FSH. Importantly, we also report minimal LGD-4033 and MK-

677 co-administration-mediated impacts on renal and haematological

markers. Moreover, the present cross-sectional data imply that these

anabolic agents ostensibly alter intramuscular androgen hormone and

receptor concentrations, along with promoting greater relative lower

and upper body strength compared to previously published data on

trainedmales (Cardaci et al., 2020).

Althoughour data suggest that these compoundsmay increasebody

mass, muscle mass and muscular strength akin to anabolic-androgenic

 1469445x, 2022, 12, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090741 by L
indenw

ood U
niversity, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CARDACI ET AL. 1473

steroids (Andrews et al., 2018; Varanoske et al., 2022, 2020), the

negative effects on FM, bone, circulating blood lipids, liver enzymes

and androgen-related markers should be strongly considered as

important contraindications (Albano et al., 2021; Andrews et al., 2018;

Machek, Cardaci et al., 2020; Varanoske et al., 2020). Specifically, the

observed BMC, bone area and BMD decrements might potentially

be attributable to an LGD-4033-mediated decrease in circulating

testosterone as an aromatizable substrate for estradiol conversion

(Machek, Cardaci et al., 2020). Although several alternative SARM

compounds demonstrate enhanced bone-associated parameters

amidst impaired hypothalamic–pituitary–gonadal axis activity, the

chronically high dose taken by the present case subject might have

physiologically superseded any potential positive BMD augmentations

(Furuya et al., 2012; Gao et al., 2005; Kearbey et al., 2007; Yin et al.,

2003). Furthermore, although a majority of the assessed serum

biomarkers in the present investigation returned to baseline post-

cycle, FSH and low-density lipoprotein–cholesterol remained outside

clinical reference ranges. These persistent alterations might suggest

that pharmacological interventions are warranted as post-cycle

strategies to rescue hormonal and lipid homeostasis. Interestingly,

fat mass also remained elevated 4 weeks post-cycle, whereas lean

body mass returned to baseline. These data ultimately suggest a

potentially expedited return to an individual’s skeletal muscle mass

baseline relative to adipose tissue after cessation of compound

administration.

We also document a substantial reduction in serum total and free

testosterone along with SHBG after 5 weeks of continued LGD-4033

andMK-677 use, demonstrating notable androgenic activity. Although

we also corroborate Basaria et al. (2013), amongst other SARM-

focused investigations (Chen et al., 2005;Clark et al., 2017;Miller et al.,

2011; Neil et al., 2018), by demonstrating an LGD-4033-mediated

reduction in serum total and free testosterone and concomitant

SHBG, the present case study also presents a possibly novel impact

of LGD-4033 and MK-677 use on intramuscular androgens and

AR content. Although data are limited on this phenomenon, we

cautiously hypothesize that this might be a consequence of previously

suggested ‘unique’ and/or ‘incomplete’ interactions or competitive

binding between non-steroidal SARMs and the AR (Bhasin & Jasuja,

2009; Furuya et al., 2013; Machek, Cardaci et al., 2020; Ponnusamy

et al., 2017). Ostensibly, these interactions might alter intracellular

androgenic hormone influx or AR transcriptional/translational activity.

While research is limited in humans, previous authors have

highlighted the potential deleterious effects of LGD-4033 andMK-677

use in humans for non-clinical contexts (Basaria et al., 2013; Flores

et al., 2020; Koller et al., 2021; Machek, Cardaci et al., 2020; Nass

et al., 2008). Similar to our present findings, increases in lean body

mass (Basaria et al., 2013), elevated liver enzymes (Basaria et al., 2013;

Flores et al., 2020; Koller et al., 2021) and liver injury (Barbara et al.,

2020; Flores et al., 2020; Koller et al., 2021), along with suppression

of free and total testosterone, FSH, SHBG, high-density lipoprotein–

cholesterol and triglycerides have all been documented with LGD-

4033 use, demonstrating clear evidence of the androgenic activity

of LGD-4033 (Basaria et al., 2013; Koller et al., 2021). Furthermore,

previous data suggest that LGD-4033 (amidst the large propensity

of existing SARM compounds) appears to increase skeletal muscle

mass without commensurate improvements in muscular strength and

function. Conversely, our cross-sectional data imply that LGD-4033

might support increases in muscle mass and strength, albeit this might

be attributable to our subject co-administering MK-677 or consuming

a relatively larger (10-fold higher) LGD-4033 dose than those pre-

viously administered in humans (Basaria et al., 2013). Furthermore,

differences in training age between the case subject and previously

published resistance-trained non-users (Cardaci et al., 2020) might

explain, in part, the observed differences in muscular strength.

In the absence of LGD-4033, MK-677 has been shown to increase

body mass, fat mass, muscle mass, bone mineral density, total body

water, appetite and to improve physical function (Adunsky et al., 2011;

Nass et al., 2008; Svensson et al., 1998), primarily posited to be by

increasing circulating GH and insulin-like growth factor 1 (Chapman

et al., 1997). Althoughprevious investigations havedescribedMK-677-

mediated decreases in serum low-density lipoprotein–cholesterol,

equivocal alterations in androgenic hormones and elevated blood

glucose, the present findings illustrate broad decrements in serum

lipids, suppressed androgenic targets and negligible changes in glucose

(Chapman et al., 1997; Murphy et al., 1998; Nass et al., 2008; Sinha

et al., 2020). Consequently, the discrepancy in thedifferential effects of

MK-677 on the aforementioned parameters is likely to be attributable

to co-administration with LGD-4033. It also remains possible that the

elevations in both TBW and fat mass were mediated by MK-677, but

it is ultimately difficult to parse out the impacts of each individual

compound in the present study.

5 CONCLUSION

Recreational SARM and GHS use has grown as a popular method to

enhance aesthetics, muscular strength and/or athletic performance,

despite a lack of empirical support to substantiate their utility or

safety in non-clinical demographics (Efimenko et al., 2021; Machek,

Cardaci et al., 2020). Furthermore, SARMs are rarely taken at pre-

viously studied clinical doses and are commonly co-administered with

other pharmacological agents. Although this case report suggests

that LGD-4033 and MK-677 harness significant anabolic properties

and are likely to increase skeletal muscle mass and strength, our

data also highlight a plethora of deleterious impacts on circulating

metabolic, lipid and androgen-related markers. SARMs and GHS

therein might erroneously be used as safer alternatives to anabolic-

androgenic steroids and should be considered more thoughtfully for

their contraindications (Albano et al., 2021; Machek, Cardaci et al.,

2020). Additionally, these are the first data to document intramuscular

androgenic hormone and receptor content, and may be important to

elucidate the anabolic and deleterious effects of these compounds in

humans further. Future investigations are tasked with evaluating the

long-term effects of these and similar co-administrated compounds on

the physiology of recreational users, in addition to how any deleterious

side effects can be optimally ameliorated.
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