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RESEARCH ARTICLE Open Access

Effects of an amylopectin and chromium
complex on the anabolic response to a
suboptimal dose of whey protein
T. N. Ziegenfuss1*, H. L. Lopez1, A. Kedia1, S. M. Habowski1, J. E. Sandrock1, B. Raub1, C. M. Kerksick2

and A. A. Ferrando3

Abstract

Background: Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and
the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential
amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower
blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the
effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose,
and the fractional rate of muscle protein synthesis (FSR).

Methods: Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey
protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR
was measured using a primed, continuous infusion of ring-d5-phenylalanine with serial muscle biopsies performed
at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively.
After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg
extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later.

Results: Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended (p = 0.09)
to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for
each group revealed significant increases in the WPACr group (+0.0197%/h, p = 0.0004) and no difference in the WP
group (+0.01215%/hr, p = 0.23). Independent t-tests confirmed significant (p = 0.045) differences in post-treatment
FSR between trials.

Conclusions: These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR
response beyond what is seen with a suboptimal dose of whey protein alone.

Keywords: Insulin, Chromium, Insulin sensitivity, Muscle protein synthesis, Amino acids

Background
The metabolism of muscle proteins operates in a contin-
ual flux whereby post-absorptive periods result in a
dominance of muscle protein breakdown and net catab-
olism [1]. Alternatively, rates of muscle protein synthesis
dominate after periods of feeding, particularly when
those feedings include an adequate dose of the essential
amino acids (EAA) [2–4]. In recent years, attempts to

determine the optimal protein dose to maximize muscle
protein synthesis have been undertaken. A number of
studies have indicated a maximal anabolic response of
muscle protein synthesis. Moore in 2009 first examined
the differential ability of titrated doses of egg protein (0,
5, 10, 20 and 40 g) to stimulate muscle protein synthesis
(MPS) rates and concluded that a 20-g dose resulted in a
maximal response [5]. Yang and colleagues used identi-
cal whey protein doses as the Moore study in elderly
men and found that after exercise a 40-g dose elicited a
maximal response [6]. Wiitard and investigators
examined progressive doses of whey protein (up 40 g)
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and reported that a 20-g dose yielded the most robust
response [7]. More recently, MacNaughton and
colleagues reported that a 40-g dose of whey protein was
responsible for higher increases in MPS compared to a
20-g dose, independent of how much lean mass an indi-
vidual possessed. Collectively, these data suggest that a
relative dose of approximately 0.18–0.40 g of protein per
kilogram of body mass acutely elicits a maximal MPS
response in humans [8, 9], depending on age and the
presence of an exercise stimulus.
The role of insulin in muscle protein metabolism

continues to garner interest from researchers. In the
presence of adequate whole protein and/or EAA, insulin
has a stimulatory effect on MPS, whereas in conditions
of lower blood EAA concentrations, insulin has an
inhibitory effect on protein breakdown with minimal im-
pact of rates of muscle protein synthesis [10]. Conse-
quently, any insulinogenic nutrient, or those that can
improve insulin signaling, when combined with varying
doses of EAA, could theoretically impact muscle protein
balance. Indeed, Churchward-Venne and colleagues de-
termined that a combination of added leucine (an essen-
tial amino acid with known insulinogenic properties
[11]) and a dose of whey protein isolate that was deemed
suboptimal (6.25 g) was able to favorably instigate acute
increases in MPS and that the measured response of this
combination was quantitatively similar to a 25 g dose of
whey protein isolate [12]. Notably, the term “suboptimal”
was used because of previous research that demonstrated
submaximal muscle protein synthesis responses when
absolutes doses of 5–10 g of protein were consumed [5].
In terms of insulin action, the trace mineral chromium

continues to be investigated for its ability to improve insu-
lin resistance and enhance insulin sensitivity in cell culture
[13, 14], animal models [15] and humans [16, 17]. Collect-
ively, these studies appear to indicate that chromium
availability favorably impacts carbohydrate and lipid me-
tabolism as well as GLUT-4 translocation. Furthermore,
chromium appears to increase insulin responsiveness via
an AMPK mediated pathway [18] and can instigate favor-
able changes to the insulin receptor [14]. Evans reported
that supplementation with chromium picolinate improved
cholesterol and glucose levels in non-diabetic and diabetic
adults and was also associated with significant losses of fat
mass and increases in lean mass [16]. Similarly, Kaats used
a double-blind, placebo-controlled study to demonstrate
that daily supplementation with chromium could favor-
ably improve body composition in exercising humans
[17]. While these studies point towards the ability of chro-
mium to favorably impact various metabolic parameters,
much more work needs to be done to clarify the impact
that chromium may have on skeletal muscle physiology,
particularly in populations that have suboptimal insulin
sensitivity and/or protein kinetics.

Healthy aging (in the absence of other comorbidities)
presents with increased levels of anabolic resistance that
result in aged individuals needing to ingest higher
amounts of protein to achieve maximal stimulation of
MPS and the promotion of a positive balance of muscle
protein [6, 19]. In addition, studies have reported a lower
intake of protein in the elderly [20] and a greater need for
protein in the elderly [21]. When combined, these two
factors result in a relative lack of optimal stimulation of
MPS, which ultimately may be tied to the loss of skeletal
muscle with aging [22–24]. Thus, nutritional strategies
that may facilitate improvements in MPS with smaller
doses of protein are of great interest to researchers and
clinicians who work with these populations.
The purpose of this study was to examine potential

differences in glucose, insulin, plasma amino acids, and
muscle protein synthesis between a suboptimal dose of
whey protein and a combination of chromium and
amylopectin in combination with the same protein dose.
It was hypothesized that ingestion of the chromium-
containing product would improve insulin signaling and
fractional synthesis rates of skeletal muscle proteins.

Methods
Experimental approach
This investigation was completed as a randomized,
double-blind, single-dose, comparator-controlled cross-
over trial. Ten apparently healthy men (n = 6) and
women (n = 4) between the ages of 22–34 years were
pre-screened using health history questionnaires, vital
signs, and blood work prior to being enrolled in the
study. All subjects were required to report to the labora-
tory after observing an eight hour fast (including
caffeine) with all testing sessions taking place at near
identical times in the morning. Additionally, subjects
were asked to avoid exercising for 72 h prior to each re-
search visit. Research procedures included venous blood
draws and vastus lateralis muscle biopsies during a
primed, constant infusion of L-[ring-d5]-phenylalanine
(Cambridge Isotope Laboratories, Andover, MA). The
fractional rate of muscle protein synthesis (FSR) was
measured using the stable isotope tracer incorporation
technique from vastus lateralis muscle biopsies per-
formed two, four, and eight hours after initiating stable
isotope tracer infusion. Blood samples were collected at
baseline (time 0) and over an eight-hour time period
(240, 270, 300, 330, 360, 390, 420 and 480 min) to assess
changes in amino acid concentrations. Similarly, glucose
and insulin concentrations were analyzed in venous
blood samples collected 240, 270, 300, 330, 360, 390 and
480 min after tracer infusion. A skeletal muscle biopsy
was performed two and four hours after tracer initiation
followed by a single dose of the assigned test product
administered orally. Study participants then completed
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eight sets of bilateral isotonic leg extension resistance
exercise at a load equivalent to approximately 80% of
their estimated one-repetition maximum (1-RM). A
third biopsy was obtained four hours after test product
ingestion. A washout period of 5 to 7 days was utilized
before each subject was crossed over to the opposite
condition and scheduled to complete an identical testing
session. The order in which test products were provided
was counterbalanced to prevent any order effect.

Study participants
Ten healthy male (n = 6) and female (n = 4) participants
(mean ± SD: 26.6 ± 3.7 years, 175.5 ± 10.9 cm, 78.56 ±
17.4 kg) were recruited to participate in this study. All
participants read and signed an IRB-approved informed
consent to participate document prior to their participa-
tion in the study (Integreview, Austin, TX; approval date:
January 13, 2015). All participants completed a medical
history and were screened by a study physician and de-
termined to be normotensive and euglycemic with nor-
mal fasting insulin and HOMA-IR values. Potential
participants were excluded if they had a history of dia-
betes, smoking, malignancy in the previous 6 months or
any other clinical condition that the researchers felt
would compromise their safe participation. Individuals
who recently lost more than ten pounds, had prior bar-
iatric procedures or were diagnosed or being treated for
any chronic inflammatory condition or disease (Lupus,
HIV/AIDS, etc.) were also excluded. Participants were
not allowed to be taking any form of chromium supple-
ments or any other dietary ingredient deemed by the
research team to affect insulin sensitivity or glucose tol-
erance. Participants must have been regularly consuming
animal proteins and agreed to continue following their
normal resistance training and protein/amino acid
supplementation patterns. Finally, participants were also
excluded if they had a known allergy to wheat proteins,
amylopectin or chromium, were regularly using any
form of corticosteroids, anabolic-androgenic steroids or
were already participating in another research study.

Adverse event monitoring
All study participants were required to record any ad-
verse events throughout the entire study protocol.
Participants were queried for symptoms during and after
their completion of the study protocol to assess both the
incidence and severity of adverse events according to
CTCAE grading and MedDRA guidelines.

Dietary and physical activity controls
All study participants were asked to maintain their
current dietary and exercise/physical activity habits. Care
was taken to control diet and physical activity levels
24 h prior to each experimental trial as all participants

were required to complete a 24-h dietary recall prior to
their initial experimental trial. A copy of this recall was
made and all study participants were instructed to dupli-
cate their dietary intake 24-h prior to their subsequent
trial. As mentioned previously, all study participants
were asked to refrain from exercise for 72 h prior to
each visit and to fast for eight hours prior to testing. All
dietary records were analyzed by the same research team
member using the clinical edition of NutriBase IX
(Phoenix, AZ).

Subject preparation
Participants reported to the laboratory after an overnight
fast, were asked to void prior, and then height (in bare
feet) and body mass were determined using a SECA
Medical Scale (model 767, Hanover, Maryland USA). An
18–22-gauge polyethylene catheter was inserted into
each arm by a research nurse; one was placed in a distal
vein for heated blood sampling, and another was placed
in the forearm for infusion of the stable isotope tracers.

Blood sampling
All blood samples were collected into lithium heparin
tubes and centrifuged. Plasma samples were then ali-
quoted to minimize future freeze/thaw cycles and stored
at −80° C until analyses. Plasma blood samples (5 ml)
were collected at baseline (0 min) and after the begin-
ning of isotope infusion (240, 270, 300, 330, 360, 390,
420 and 480 min) for analysis of amino acid concentra-
tions and isotopic enrichment. Insulin and glucose con-
centrations in plasma were measured at 240, 270, 300,
330, 360, 390 and 480 min after baseline sampling.

Amino acid (isotopic) tracer
After insertion of peripheral catheters, a primed
(5.04 μmol/kg), continuous (0.084 μmol/kg/min)
infusion of the stable isotope ring-d5-phenylalanine was
initiated. Stable isotopes were obtained from Cambridge
Isotope Laboratories (Andover, MA), compounded by a
licensed pharmacy (Cantrell Pharmacy, Little Rock, AR)
and tested for sterility and pyrogenicity prior to adminis-
tration. Prior to infusion into the subject, the isotope
solution was passed through a sterile 0.22 μm
(Millipore) filter.

Muscle biopsy procedure
Muscle biopsies from the vastus lateralis were performed
two, four and eight hours after initiation of tracer
infusion. After the biopsy at four hours, a single dose of
WPACr or WP was administered orally under supervi-
sion. Muscle biopsies were performed under local
anesthesia (using sterile 1% lidocaine, without epineph-
rine) for pain management. A 5 mm Bergström needle
was advanced into the muscle through a small (~1 cm)
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incision. Immediately after applying suction, a sample of
the muscle (approximately 100–120 mg) was removed
with the needle. The sample was cleaned with sterile sa-
line, trimmed of any visible connective tissue, blotted,
and then cut into three equal portions (~30 – 40 mg).
All three samples were immediately frozen in liquid ni-
trogen and stored at −80° C. One portion was utilized
for determination of muscle protein synthesis, and the
others were retained for backup analyses.

Supplementation protocol
Upon consent, study participants were randomly
assigned in a double-blind fashion to one of two trials: 6
g of whey protein isolate (BiPro USA, Eden Prairie,
MN) + 2 g of the test product (Velositol™) or 6 g of whey
protein isolate. All provided supplements were prepared
in powdered form and packaged in coded generic con-
tainers for double-blind administration and dissolved in
8 oz of water immediately prior to oral dosing. All sam-
ples were blinded and matched for appearance, color,
aroma and flavor by the study sponsor. Batch analysis of
provided product at a third-party facility (Eurofins Sci-
entific, Inc, Des Moines, IA USA, Certificate of Analysis
# AR-15-QD-031109-01) was completed of both WPACr
and WP and results indicated that levels of all bioactive
ingredients were consistent with those reported on the
Supplement Facts Label (see Fig. 1). After a 5–7 day
washout, subjects crossed over and completed the op-
posite trial. The order in which test products were pro-
vided was counterbalanced to prevent any order effect.

Resistance exercise protocol
As previously reported [25], all study participants then
completed a single bout of bilateral leg extension exer-
cise after supplement ingestion. Prior to beginning the
study protocol all study participants determined their
ten-repetition maximum and this load was used
throughout the study. Each exercise trial consisted of
eight sets of ten repetitions at their respective 10-
repetition maximum load. A traditional plate-loaded leg
extension machine was used and 90 s of rest was pro-
vided between each set. All repetitions were performed

to near full-extension of the knee before returning to ap-
proximately 90–100° of knee flexion. Participants were
instructed to extend the knee through the concentric
phase for two seconds, briefly pause and return the knee
eccentrically for a two second period. Each repetition
was supervised by research personnel to ensure the
proper load was used, each repetition was completed,
and an appropriate range of motion and lifting cadence
was followed. If a participant became too fatigued during
the initial session to complete any repetition, the weight
was lowered and this adjustment was matched during
the subsequent visit. Thus, since all participants were re-
quired to complete the same number of repetitions at
the same weight load, volume was equal between trials
(within subjects).

Calculation of fractional synthesis rates of muscle protein
synthesis
Upon thawing, muscle tissues were weighed, and tissue
proteins were precipitated with 0.5 ml of 4% SSA. The
tissues were then homogenized and then centrifuged for
collection of supernatant. The procedure was repeated
two more times, and tissue intracellular free AAs were
extracted from the pooled supernatant via the same cat-
ion exchange chromatography stated in plasma analyses
and then dried under the Speed Vac. The remaining
muscle pellet was washed, dried, and hydrolyzed in
0.5 ml of 6 N HCl at 105 °C for 24 h. Enrichments from
muscle free and bound tracers were determined as in
plasma analyses. Calculation of the fractional rate of
muscle protein synthesis (FSR) was accomplished by the
following equation:
FSR (%/hr) = [(Ep2 – Ep1)/(Em X t)] X 60 X 100;

where EP1 and EP2 are the enrichments of bound l-
[ring-2H5] phenylalanine in the first and second biop-
sies, respectively, and Em is the calculated mean value
of the enrichments of [ring-2H5] phenylalanine in the
plasma pool. t is the time in minutes elapsed between
the first and second muscle biopsy. Factors 60 and
100 were used to express FSR in percent per hour
(Kim et al. 2014).

Statistical analyses
A p-value of ≤0.05 was used to indicate statistical signifi-
cance and values from 0.051 to 0.10 were deemed a
trend. In all cases data are presented as means ± SD. All
variables were tested for normality first using the
Shapiro-Wilk test and followed up with individual
skewness and kurtosis scores using 1.96 as a respective
cut-off. Blood glucose, insulin and amino acid concen-
trations were compared using two-way factorial ANO-
VAs and t-tests when appropriate. Area under the curve
(AUC) calculations were completed using the trapezoidal
rule using Microsoft Excel (Seattle, WA). To investigate

Fig. 1 Supplements facts label for ACr
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the presence of a gender effect due to our mixed gender
cohort, a two-part approach was used. First, FSR data
was analyzed using a univariate factorial ANOVA with
gender and pre-treatment FSR as a covariate. Addition-
ally, separate individual t-tests on both the pre-
treatment and post-treatment FSR data for both condi-
tions and with them pooled together. In no situation
was gender found to operate as a significant confounder;
consequently, all FSR data was analyzed as a mixed gen-
der cohort. Muscle FSR values were then compared
using ANCOVA (using the pre-treatment FSR value as
the covariate). In addition, post-treatment FSR values
and within-trial changes in FSR were compared using
dependent t-tests. Effect sizes and 95% confidence inter-
vals on the effect size were computed on the 4-h post-
treatment FSR data. All statistical analysis and graphs
were completed using IBM-SPSS for Windows, v21
(Armonk, NY) and Microsoft Excel (Seattle, WA).

Results
Compliance and adverse events
One female participant was initially removed after
randomization due to dizziness that occurred after lido-
caine injection and prior to the first muscle biopsy. This
study participant was subsequently replaced by another
eligible female. No mild, moderate or serious adverse
events related to product ingestion were reported by any
of the study participants.

Dietary intake
Study participants were 100% compliant in completing
dietary records as well as replicating their food and fluid
intake as instructed prior to each testing condition. In-
dependent t-tests revealed that energy (Male [n = 6]:
27.9 ± 5.9 kcal/kg/day vs. Female [n = 4]: 26.5 ± 7.3 kcal/
kg/day, p = 0.74), carbohydrate (Male: 2.6 ± 0.8 g/kg/day
vs. Female: 3.0 ± 0.6 g/kg/day, p = 0.49) and fat intake
(2.3 ± 0.7 g/kg/day vs. 1.7 ± 0.3 g/kg/day, p = 0.14) nor-
malized to body mas in kg was not different between
genders. Protein intake was greater (p = 0.003) in females
(1.7 ± 0.2 g/kg/day) than in males (1.2 ± 0.2 g/kg/day).

Plasma amino acid responses
Total BCAA concentrations in both WPACr and WP
peaked 30 min post-treatment (270 min time point) and
remained elevated (p < 0.05) for another 30 min (300 min
time point) before returning back to pre-treatment levels
(Table 1). Two-way ANOVA revealed no trial x time inter-
actions (p = 0.31) for changes in total branched-chain
amino acids between the two conditions.
Individual serum concentrations of leucine, isoleucine

and valine all followed a similar pattern of response with
a significant increase (p < 0.05) occurring approximately
30 min after ingestion (270 min time point) and
remained elevated for another 30 min (300 min time
point). Two-way ANOVA revealed no trial x time inter-
actions for leucine (p = 0.45), isoleucine (p = 0.51) and
valine (p = 0.35) of these individual amino acids nor were
pair-wise differences found to be statistically significant
between trials at any time point. Amino acids responses
are outlined in Table 1.

Plasma glucose and insulin responses
Two-way mixed factorial ANOVA revealed no significant
trial x time interaction (p = 0.22) for plasma glucose re-
sponses. Significant within-trial reductions in plasma glu-
cose were seen in WPACr in all time points after the
300 min time point. Independent t-tests comparing the
AUC for plasma glucose responses in the first two hours
(240–360 min, p = 0.162) and four hours (240 – 480 min,
p = 0.102) after test product administration were not sig-
nificant. Plasma glucose responses are outlined in Table 2.
Two-way mixed factorial ANOVA using plasma insu-

lin responses revealed a trend (p = 0.09) for a trial x time
interaction. Within-trial changes in comparison to the
240-min sample in both groups resulted in significant
increases in plasma insulin concentrations (p < 0.05) at
270 and 300 min (30 and 60 min post-treatment, re-
spectively). Independent t-tests comparing the AUC for
plasma insulin responses in the first two hours (240–360
min, p = 0.346) and four hours (240 – 480 min, p =
0.478) after test product administration were not signifi-
cant. Plasma insulin responses are outlined in Table 2.

Table 1 Plasma concentrations (means ± SD) of leucine, isoleucine, valine and total BCAA for WPACr and WP across all time points

Group 0 min 120 min 240 min 270 min 300 min 330 min 360 min 390 min 420 min 480 min

Leucine WPACr 122 ± 24 115 ± 18 113 ± 16 216 ± 32† 163 ± 26† 133 ± 20 128 ± 19 124 ± 19 124 ± 17 128 ± 15

(μM) WP 105 ± 25 101 ± 19 103 ± 24 207 ± 35† 163 ± 24† 132 ± 23† 124 ± 22† 119 ± 21† 118 ± 21† 122 ± 22†

Isoleucine WPACr 65 ± 15 60 ± 9† 57 ± 9† 107 ± 14† 79 ± 12† 62 ± 9 59 ± 9 57 ± 9† 57 ± 8 60 ± 7

(μM) WP 60 ± 13 56 ± 9† 57 ± 12† 110 ± 19† 84 ± 14† 67 ± 12 62 ± 12 60 ± 10 59 ± 10 62 ± 11

Valine WPACr 216 ± 35 207 ± 30† 197 ± 27† 254 ± 38† 222 ± 29 199 ± 27† 197 ± 28† 191 ± 29† 188 ± 26† 196 ± 27†

(μM) WP 208 ± 38 198 ± 32† 199 ± 33 261 ± 37† 228 ± 31 205 ± 34 200 ± 31 196 ± 31 195 ± 33† 199 ± 35

Total BCAAs WPACr 404 ± 71 382 ± 56† 367 ± 50† 576 ± 81† 464 ± 64† 394 ± 53 383 ± 54 372 ± 55 369 ± 49 384 ± 48

(μM) WP 387 ± 55 364 ± 45† 371 ± 58 572 ± 99† 479 ± 57† 411 ± 51 394 ± 50 387 ± 46 380 ± 50 392 ± 52

WPACr Whey protein + Amylopectin + Chromium, WP Whey protein, μM micromoles. † = Significantly different from 0 min (p < 0.05)
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Muscle Fractional Synthesis Rate (FSR)
Independent t-tests were computed on both the pre-
treatment (p = 0.74) and 4-h post-treatment (p = 0.76)
FSR data for all conditions. In all instances, no signifi-
cant differences were found between genders for either
condition or when both condition were pooled at either
time point.
Pre-treatment FSR data was not significantly different

between WP and WPACr (p = 0.78). At the 4-h post-
treatment time point, WPACr yielded a more robust
FSR response (i.e. 48% increase from baseline) compared
to the Control trial (24% increase from baseline; Fig. 2).
ANCOVA comparing the post-treatment FSR values
(using the pre-treatment value as the co-variate) re-
vealed a strong trend between trials (p = 0.054). Inde-
pendent t-tests confirmed significant (p = 0.045)
differences in post-treatment FSR between trials, as well
as a statistically significant (within-trial) increase using
paired samples t-test during WPACr (48%, p = 0.0004)
vs. a non-significant increase during the WP (24%, p =
0.23). The average effect size for the 4-h post-treatment
data was 0.93 (95% CI: 0.00–1.85), indicating a large
treatment effect during the WPACr trial.

Discussion
The primary finding of the present study is that despite
similar changes in plasma EAA responses, adding a
novel amylopectin/chromium-containing complex to a
suboptimal dose of whey protein magnified the increase
in MPS from protein intake and resistance exercise
(assessed four hours post-ingestion). A key strength of
our study design is the randomized, counter-balanced,
within-subject crossover approach we used to examine
the potential differences between the two experimental
conditions.
Of note, the MPS response with WPACr was approxi-

mately two times greater than the response seen in the
whey protein only condition (i.e. 48% vs. 24% increase
from baseline, Fig. 2). Mechanistically, amino acid levels
significantly increased in both conditions, suggesting that
the amount of substrate available for new muscle proteins
to be resynthesized was not favorably tilted towards the
WPACr trial. While it is tempting to speculate that the
ACr complex afforded a more favorable biochemical en-
vironment upon which new proteins could be synthesized,
this assertion is premature given our current study design.
Future work examining the expression of various intra-
muscular signaling proteins (i.e., mTOR, p70s6k, etc.) is
needed to explore this possibility.
To our knowledge, these results are among the first to

illustrate the impact of a novel amylopectin chromium-
containing complex on the stimulation of mixed muscle
protein synthesis. In seeking an explanation for our
study outcomes, the purported ability of chromium to
favorably alter insulin metabolism [14, 26, 27] is an im-
portant mechanistic consideration. This suggestion is
supported by previous cell culture [13, 14], animal [15]
and human work [16, 17] that has indicated chromium
picolinate can improve carbohydrate and lipid metabol-
ism, GLUT-4 translocation and others aspects of insulin
metabolism. In this respect, Evans and Bowman reported
that chromium picolinate can increase the internaliza-
tion of insulin and markedly increase leucine uptake in
cultured rat skeletal muscle cells [13]. Other cell culture
work by Wang and colleagues reported that treatment of
chromium in cultured human cells led to greater activa-
tion of insulin receptor kinase activity [14]. Cefalu used
an animal model and concluded that oral chromium

Table 2 Plasma concentrations (means ± SD) of glucose and insulin for WPACr and WP across all time points

Group 120 min 240 min 270 min 300 min 330 min 360 min 390 min 480 min

Glucose WPACr 5.37 ± 0.34 5.29 ± 0.26 5.27 ± 0.33 5.14 ± 0.23 5.14 ± 0.19 5.14 ± 0.25 5.04 ± 0.27 4.97 ± 0.24

(mM) WP 5.00 ± 0.21 5.07 ± 0.45 5.17 ± 0.38 5.06 ± 0.27 5.08 ± 0.28 5.02 ± 0.31 4.92 ± 0.32 4.88 ± 0.28

Insulin WPACr 5.61 ± 1.69 4.50 ± 1.48 12.74 ± 2.53† 6.87 ± 2.18† 4.50 ± 1.12 3.81 ± 1.15 3.49 ± 0.95† 3.84 ± 1.43

(mIU/mL) WP 4.68 ± 2.28 4.42 ± 2.05 10.0 ± 4.32† 6.13 ± 2.62† 4.69 ± 1.83 4.22 ± 1.90 3.77 ± 1.43 3.33 ± 1.38

WPACr Whey protein + Amylopectin + Chromium, WP Whey protein, μM micromoles, mIU/mL milliinternational units per milliliter of blood, † significantly different
than 240 min time point (p < 0.05)
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Fig. 2 Mean ± SD post-treatment fractional synthesis rates using
plasma precursor enrichment values for WPACr and WP 4 h after the
treatment was administered. * = ANCOVA on 4-h post-treatment FSR
value, p = 0.054. The within-trial change (4 h post-treatment FSR vs.
baseline FSR data) for FSR was p = 0.0004 for WPACr vs. p = 0.23 for
WP. In addition, independent t-test comparing post-treatment FSR
between trials was p = 0.045. WPACr = Whey protein + Amylopectin
+ Chromium. WP =Whey protein

Ziegenfuss et al. Journal of the International Society of Sports Nutrition  (2017) 14:6 Page 6 of 9



treatment significantly increased glucose and insulin
areas under the curves as well as improved GLUT-4 me-
tabolism leading them to conclude that chromium pico-
linate supplementation enhances insulin sensitivity and
glucose disappearance [15]. Finally and in a series of
human studies, Evans reported that 200 micrograms of
chromium picolinate improved cholesterol and glucose
levels in non-diabetic and diabetic adults, while two
other studies in young men who were resistance training
experienced significant losses of body fat and increases
in lean mass [16]. Additional human work published in
1998 used a double-blind, placebo-controlled approach
and also concluded that daily supplementation with
chromium significantly improves multiple body compos-
ition parameters [17].
While the exact role(s) of insulin in muscle protein

metabolism continues to be clarified, insulin has a dem-
onstrated stimulatory effect on muscle protein synthesis
when adequate EAA precursors are present, and seems
to work more towards reducing muscle protein break-
down when EAA concentrations are reduced [10]. In
this respect, investigating the post insulin receptor signal
transduction pathways and phosphorylation cascades, in-
cluding activation of IRS-1 (insulin receptor substrate-1)
/PI3K (phosphatidylinositol-3 kinase)/Akt (protein kin-
ase B)/mTORC /p70S6 kinase axis, are central to under-
standing the molecular mechanisms of muscle protein
synthesis [28–30]. If WPACr acutely enhances these
intracellular responses to insulin as indicated by previ-
ous work in culture [18], animal [13] and human studies
[16], then it may potentially augment the anabolic re-
sponse of skeletal muscle to an otherwise suboptimal
dose of whey protein. This is an important consideration
as the present study examined acute changes in frac-
tional synthesis rates of mixed muscle proteins, but did
not explore the impact of the chromium-containing
compound on overall muscle protein balance, rates of
muscle protein breakdown, or whole-body net protein
balance. It is also worth mentioning that an interaction
between the whey protein and amylopectin could have
also impacted the observed changes in muscle FSR,
however, this interaction is deemed minimal. The inclu-
sion of amylopectin was primarily from a formulary per-
spective to operate as a transport vehicle; further, the
provided dosage (~2 g) has not been shown to exhibit a
substantive physiological impact.
While our four-hour post-treatment FSR changes provide

encouraging preliminary evidence that the chromium-
containing complex may potentiate the anabolic response
seen in a mixed muscle sample after a resistance training
stimulus, these conclusions have potential limitations (e.g.,
small sample size and our mixed gender cohort). In this re-
spect, our sample size is quite consistent with previous stud-
ies that have employed similar study designs using identical

methodologies that are known to have excellent sensitivity
for detecting changes in FSR [2–4]. In addition, any impact
of gender was deemed minimal because our independent t-
tests between genders on all FSR data revealed no instance
where gender differences were present, as did univariate fac-
torial ANOVA with gender as a covariate. These findings
support previous work by Markofski that demonstrated no
difference in basal rates of MPS between genders [31]. In
addition, it is acknowledged that our muscle biopsy samples
were analyzed as a mixed muscle sample and thus the ob-
served effects may or may not be specific to myofibrillar
protein synthesis.
The fitness and athletic communities could potentially

benefit from our findings through identification of means
to drive muscle anabolism while reducing the overall daily
caloric load. Additionally, the aging and insulin resistant
populations are particularly intriguing candidates for
translation of this line of research into practice. In particu-
lar, the aged have previously been shown to exhibit a cer-
tain level of anabolic resistance to the stimulatory effect of
amino acids [19] resulting in larger doses of the essential
amino acids and intact proteins required to stimulate
maximal rates of muscle protein synthesis [6]. This is
problematic given evidence suggesting that protein intake
in the elderly is reduced [20].

Conclusions
In conclusion, this study demonstrates that the addition
of the amylopectin/chromium-containing complex to a
suboptimal dose of whey protein [12] improves the
muscle anabolism response to acute resistance exercise
beyond that of the protein dose alone in young, healthy
subjects. Future research should confirm these data and
seek to better understand the mechanisms responsible
for the observed results.
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