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Abstract: Resistance training and maintenance of a higher protein diet have been recommended
to help older individuals maintain muscle mass. This study examined whether adherence to a
higher protein diet while participating in a resistance-based exercise program promoted more
favorable changes in body composition, markers of health, and/or functional capacity in older
females in comparison to following a traditional higher carbohydrate diet or exercise training
alone with no diet intervention. In total, 54 overweight and obese females (65.9 ± 4.7 years;
78.7 ± 11 kg, 30.5 ± 4.1 kg/m2, 43.5 ± 3.6% fat) were randomly assigned to an exercise-only
group (E), an exercise plus hypo-energetic higher carbohydrate (HC) diet, or a higher protein diet
(HP) diet. Participants followed their respective diet plans and performed a supervised 30-min
circuit-style resistance exercise program 3 d/wk. Participants were tested at 0, 10, and 14 weeks.
Data were analyzed using univariate, multivariate, and repeated measures general linear model
(GLM) statistics as well as one-way analysis of variance (ANOVA) of changes from baseline with [95%
confidence intervals]. Results revealed that after 14 weeks, participants in the HP group experienced
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significantly greater reductions in weight (E −1.3 ± 2.3, [−2.4, −0.2]; HC −3.0 ± 3.1 [−4.5, −1.5]; HP
−4.8 ± 3.2, [−6.4, −3.1]%, p = 0.003), fat mass (E −2.7 ± 3.8, [−4.6, −0.9]; HC −5.9 ± 4.2 [−8.0, −3.9];
HP −10.2 ± 5.8 [−13.2, –7.2%], p < 0.001), and body fat percentage (E −2.0 ± 3.5 [−3.7, −0.3]; HC
−4.3 ± 3.2 [−5.9, −2.8]; HP −6.3 ± 3.5 [−8.1, −4.5] %, p = 0.002) with no significant reductions in
fat-free mass or resting energy expenditure over time or among groups. Significant differences were
observed in leptin (E −1.8 ± 34 [−18, 14]; HC 43.8 ± 55 [CI 16, 71]; HP −26.5 ± 70 [−63, −9.6] ng/mL,
p = 0.001) and adiponectin (E 43.1 ± 76.2 [6.3, 79.8]; HC −27.9 ± 33.4 [−44.5, −11.3]; HP 52.3 ± 79
[11.9, 92.8] µg/mL, p = 0.001). All groups experienced significant improvements in muscular
strength, muscular endurance, aerobic capacity, markers of balance and functional capacity, and
several markers of health. These findings indicate that a higher protein diet while participating in a
resistance-based exercise program promoted more favorable changes in body composition compared
to a higher carbohydrate diet in older females.

Keywords: diet; exercise; sarcopenia; functional capacity; elderly

1. Introduction

Obesity is considered the leading cause of preventable death world-wide and is associated with
a myriad of medical co-morbidities, including diabetes, arthritis, pulmonary abnormalities, urinary
incontinence, cataracts, and certain types of cancer [1–4]. Obesity complicates the aging process [1,5–7]
particularly when associated with sarcopenic obesity [2–12]. The fastest growing age group in the
United States are individuals over the age of 65 [13–15]. According to the Center for Disease Control
(CDC)’s 2007–2010 National Health and Nutrition Examination Survey, 41% of individuals in the
United States aged 65–74 years old and 28% of those above age 75 were obese [16]. Aging women
have been shown to be less active, and more likely to suffer from falls and hip fractures, which may
subsequently lead to increased health care expenditures [17,18]. Consequently, identifying strategies to
promote effective weight and fat loss while maintaining muscle mass, strength, and functional capacity
as women age can have significant public health implications.

Numerous studies indicate that resistance exercise training can maintain and/or increase fat-free
mass as one ages [19–22]. Accordingly, the American College of Sports Medicine (ACSM) recommends
that elderly individuals engage in regular physical activity that includes resistance-exercise of all
major muscle groups [23,24]. Additionally, it has been recommended that older individuals should
increase dietary protein intake in an attempt to maintain muscle mass and prevent sarcopenia [25–28].
Together, these two lifestyle modifications are likely to offer synergistic benefits pertaining to body
composition and muscular strength in elderly populations. We have previously reported that adherence
to a circuit-style resistance exercise program and adherence to a higher protein hypo-energetic
diet promoted greater weight and fat loss while maintaining muscle mass and preserving resting
energy expenditure in pre-menopausal and post-menopausal women under the age of 55 [29–35].
Moreover, this program promoted gains in aerobic capacity, muscular strength, and endurance, and
improved markers of metabolic syndrome [29–35]. Theoretically, incorporating resistance exercise
while maintaining a higher protein hypo-energetic diet may promote more favorable changes in
body composition in older individuals attempting to lose weight compared to adherence to a higher
carbohydrate diet. The purpose of this study was to determine if this exercise and diet intervention
strategy could be an effective way to promote weight and fat loss, maintain fat-free mass and resting
energy expenditure, and/or improve health and fitness in older sedentary and overweight and obese
women in comparison to following a traditional higher carbohydrate hypo-energetic diet or resistance
exercise training alone.
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2. Methods

2.1. Experimental Design

This study was conducted at a university-based research setting as a randomized, parallel,
prospective diet and exercise intervention trial. Females between the ages of 60 and 75 years were
randomly assigned to one of three experimental groups: no diet intervention + exercise (E); higher
carbohydrate diet + exercise (HC); or higher protein diet + exercise (HP). Participants partook in
the Curves® (Curves International, Waco, TX, USA) fitness and/or weight management program
for 14 weeks. Those assigned to the diet interventions were assigned similar hypo-energetic diets
comprised of higher carbohydrate or higher protein macronutrient distributions. Primary outcome
variables included body weight, body composition (i.e., fat mass, fat free mass, percent body fat),
and resting energy expenditure. Secondary outcome variables included resting hemodynamics, aerobic
capacity, muscular strength, muscular endurance, functional capacity and balance, metabolic and
appetite-related hormones, and clinical blood panels.

2.2. Participants

This research protocol was approved by a university internal review board for the protection
of human participants prior to initiation. Participants were recruited from local newspapers,
radio advertisements, flyers, and the Internet. Participants meeting eligibility criteria attended a
familiarization session. Entrance criteria stipulated recruitment of sedentary females between the ages
of 60–75 years with a body mass index (BMI) greater than 27 kg/m2 and/or body fat percentage above
35% and no recent participation in a diet or exercise program or weight loss within the previous six
months. Participants obtained medical clearance from their family physician prior to participating in
baseline assessments. Exclusion criteria included: (1) presence of uncontrolled metabolic disorders
including known electrolyte abnormalities, heart disease, arrhythmias, diabetes, or thyroid disease;
(2) history of hypertension or hepatorenal, musculoskeletal, autoimmune, or neurological diseases;
(3) current prescription of thyroid, hyperlipidemic, hypoglycemic, anti-hypertensive, or androgenic
medications; or (4) consumption of ergogenic levels of nutritional supplements that may affect
muscle mass (e.g., creatine, β-Hydroxy β-methylbutyric acid, anabolic/catabolic hormone levels
(e.g., dehydroepiandrosterone), or weight loss (e.g., thermogenics) within the three months prior to
the start of the study.

Figure 1 presents a consolidated standards of reporting trials (CONSORT) diagram. A total of
72 women met the entrance criteria, completed baseline testing, and began the exercise and/or diet
program intervention. Fifteen participants withdrew during the first month citing a lack of desire to
continue. One participant had recurrent musculoskeletal complaints unrelated to the intervention and
was dropped during the second month. One participant was dropped for medical reasons during the
last week of the study due to recurrent symptoms of hypotension n, and one participant was dropped
due to failure to comply with dietary instructions and/or training compliance. Therefore, a total of
54 volunteers completed the 14-week intervention and were included in the analysis. This included
17 participants in the higher protein (HP) group, 18 participants the higher carbohydrate group (HC),
and 19 participants in the exercise-only (E) group.
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Figure 1. Consolidated standards of reporting trials (CONSORT) flow chart.

2.3. Testing Sequence

Figure 2 provides an overview of the experimental design. Participants attended a detailed
familiarization session prior to baseline testing. Body composition and clinical assessments were
obtained at 0, 10, and 14 weeks. Dietary records (three weekdays and one weekend day) were obtained
prior to each testing session. Participants were asked to refrain from vigorous physical activity, alcohol
intake, and ingestion of over the counter medications for 24 h prior to testing. In addition, participants
fasted for 12 h prior to reporting to the laboratory. All testing was conducted in the early morning
hours to control for diurnal variations in hormone levels. The following measures were obtained at
each testing session: weight; total body water determined by bioelectrical impedance (BIA); body
composition determined by dual energy X-ray absorptiometry (DEXA); hip and waist measurements;
resting energy expenditure (REE); resting blood pressure measurement; fasting whole blood and serum
samples; balance tests that included the Sensory Organization Test (SOT), Limits of Stability (LOS),
Step Up and Over (SUO), and Sit to Stand (STS) assessments; 1 repetition maximum (1RM) lifts on
the bench press and leg press; upper and lower body muscular endurance (maximum repetitions
performed at 80% of 1RM); a 6-min walk test; and a maximal cardiopulmonary exercise stress test.
Participants also completed a medical safety and side effect report that was analyzed by the lab
research nurse weekly.
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2.4. Diet Intervention

Participants were assigned to one of the following three groups: (1) a no diet + exercise only (E);
(2) a higher carbohydrate diet + exercise (HC); or (3) a higher protein diet + exercise (HP). Participants
assigned to the no diet + exercise only control group participated in training sessions while maintaining
their normal dietary habits. Participants assigned to the weight loss diet interventions followed
Curves weight loss program. They were isocaloric and macronutrient content followed methods
previously described [29–35]. In both dietary interventions, participants were assigned diets consisting
of 1200 kcal/d for 1 week (Phase I) followed by 1600 kcal/d for 9-weeks (Phase II) over the course of a
10-week active weight loss period. The HC diet followed a traditional higher carbohydrate/low fat diet
(i.e., 55% carbohydrate, 15% protein, and 30% fat). The HP diet offered higher protein food options with
a goal of increasing dietary protein to approximately 1.2 g/kg/d and reducing carbohydrate intake
while maintaining 30% of calories from fat. The final 4 weeks (Phase III) served as a weight maintenance
period in which participants in both diet groups were given traditional higher carbohydrate diets
with a goal of ingesting about 2100 kcal/d. Participants were instructed to monitor their body weight
daily and to follow their assigned 1200 kcal/d diet for 2 d if they gained 3 lbs. of weight. Participants
were given dietary plans and meal menus to follow at the start of the study. Participants met with a
registered dietitian and/or exercise physiologist every two weeks and during each testing session to
discuss diet and exercise compliance. Previous research in our lab has demonstrated that this diet
intervention generally increases protein intake to 30% to 40% while maintaining fat intake between
25% and 30% [30–33,35]

2.5. Training Protocol

Participants performed the 30-min Curves circuit exercise program (Curves International,
Waco, TX, USA) three days per week over the course of the 14-week study. The circuit included
13 bi-directional hydraulic concentric-only resistance exercise machines which worked all major muscle
groups (i.e., elbow flexion/extension, knee flexion/extension, shoulder press/latissimus dorsi pull,
hip abductor/adductor, chest press/seated row, horizontal leg press, squat, abdominal crunch/back
extension, chest flies, oblique, shoulder shrug/dip, hip extension, and side bends). During each
training session, participants were coached to perform as many repetitions as possible within a 30-s
time period on each resistance machine. Between machines, participants performed floor-based aerobic
exercises or stepping exercise for 30 s with a goal of maintaining an elevated heart rate. We previously
reported that women participating in this type of training elicit an average exercise heart rate of
126 ± 15 bpm (80% of maximal heart rate), an average exercise intensity of 65 ± 10% of peak oxygen
uptake, resistance exercise intensities ranging between 61% and 82% of 1RM on the various exercise
machines, and expenditure of 314 ± 102 kcal per workout [36–38]. Participants completed the entire
circuit twice during each workout and then performed stretching exercises. All workouts were
supervised by trained fitness instructors who monitored proper exercise technique and maintenance
of adequate exercise intensity. Compliance to the exercise program was set a priori at a minimum of
70% compliance (30/42 exercise sessions).

3. Procedures

3.1. Dietary Assessment

Participants were provided a detailed description of how to measure and record food and beverage
intake by a registered dietitian prior to the start of the study. Participants recorded all food and energy
containing fluids consumed for 4 day (including one weekend day) prior to each testing session.
Dietary records were checked for accuracy prior to submission each testing session and analyzed
by a registered dietitian using dietary analysis software (ESHA Food Processor Version 8.6, Salem,
OR, USA).
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3.2. Resting Energy Expenditure and Metabolism

Resting energy expenditure (REE) was assessed using a Parvo Medics TrueMax 2400 Metabolic
Measurement System (ParvoMedics, Inc., Sandy, UT, USA). This test was performed in a fasted state
with the participants lying supine on an exam table. A clear, hard plastic hood and a soft, clear plastic
drape were placed over the participants’ neck and head in order to determine resting oxygen uptake
and energy expenditure. All participants remained motionless without falling asleep for approximately
20 min. Data were recorded after the first ten minutes of testing during a five-minute period of time
in which criterion variables (e.g., VO2 L/min) changed less than 5% [39] Test–retest measurements
on 14 participants from a study previously reported [30] revealed that test–retest correlations (r) of
collected VO2 in L/min ranged from 0.315 to 0.901 (mean 0.638) and the coefficient of variation ranged
from 8.2 to 12.0% (mean: 9.9%) with a mean intra-class coefficient of 0.942, p < 0.001.

3.3. Anthropometric Measures and Body Composition

Height and body weight were measured according to standard procedures using a calibrated
electronic scale (Cardinal Detecto Scale Model 8430, Webb City, MO, USA), with a precision of
+/−0.02 kg. Waist and hip circumference was measured using a Golnick tensiometer using standard
criteria [40]. Total body water was estimated using a Xitron 4200 Bioelectrical Impedance Analyzer
(Xitron Technologies, Inc., San Diego, CA, USA) in order to monitor hydration status. Body composition
and bone density (excluding the cranium) were evaluated using calibrated Hologic Discovery W
(Hologic Inc., Waltham, MA, USA) dual energy X-ray absorptiometry (DEXA) equipped with APEX
Software (APEX Corporation Software, Pittsburg, PA, USA). Test–retest reliability studies performed
with this DEXA machine have previously yielded mean coefficients of variation for total bone mineral
content and total fat free/soft tissue mass of 0.31–0.45% with a mean intra-class correlation of 0.985 [41].

3.4. Exercise and Functional Capacity

Resting heart rate was determined by palpation of the radial artery using standard
procedures [40]. Blood pressure was assessed by auscultation of the brachial artery using an aneroid
sphygmomanometer using standard clinical procedures [40]. Resting heart rate and blood pressure
measurements were taken on the participant in the supine position after resting for 5 min. Participants
were attached to a Quinton 710 ECG (Quinton Instruments, Bothell, WA, USA) and walked on
a Trackmaster TMX425C treadmill (JAS Fitness Systems, Newton, KS, USA). Expired gases were
collected using a Parvo Medics 2400 TrueMax Metabolic Measurement System (ParvoMedics, Inc.,
Sandy, UT, USA). Participants then performed a standard symptom-limited maximal Bruce treadmill
exercise test according to standard procedures [40]. Calibration of gas and flow sensors was completed
every morning prior to testing and was found to be within 3% of the previous calibration point.

A 6-min minute walk test (6MWT) was conducted using standardized procedures including a
flat surface distance of 100-feet with intervals marked by colored tape on the ground. Participants
were told to walk as far as possible for six minutes without running or jogging. Participants were
allowed to stop and rest during the test, but were instructed to resume walking as soon as possible.
The number of laps and distance were recorded after 6 min. The test–retest reliability for the 6MWT
has been reported to range from r = 0.95 to r = 0.97 [42,43].

A standard isotonic Olympic bench press (Nebula Fitness, Versailles, OH, USA) was used for
the isotonic bench press testing. A 1RM testing procedure was performed using standard procedures
with 2-min recovery between attempts [40]. Following 1RM testing, participants performed maximum
number of repetitions at 80% of 1RM on bench press to determine upper body muscular endurance.
Participants were then given five minutes of rest and then had their lower body 1RM maximal strength
determined using a hip sled/leg press (Nebula Fitness, Versailles, OH, USA) and standard testing
procedures with 2-min rest recovery between attempts [40]. Participants then performed maximum
number of repetitions at 80% of hip sled/leg press 1RM to assess lower body muscular endurance.



Nutrients 2018, 10, 1070 7 of 20

Test to test reliability of performing these strength tests in our lab has yielded low mean coefficients of
variation (CV) and high reliability for the bench press (CV: 1.9%, intra-class r = 0.94) and hip sled/leg
press (CV: 0.7%, intra-class r = 0.91).

Measurements of balance and functional capacity were obtained using the Neurocom
SmartEquitest® (Neurocom International, Portland, OR, USA). Data were collected on postural balance
and mobility utilizing the Sensory Organization Test (SOT), Limits of Stability (LOS), Step Up and
Over (SUO), and Sit to Stand (STS) tests following standardized procedures [44]. Test-to-test reliability
of performing these tests in women aged 65–75 has been reported to be r = 0.92 [45].

3.5. Blood Collection and Analysis

Fasted whole blood and serum samples were collected using standard phlebotomy techniques.
Whole blood samples were analyzed for complete blood counts with percent differentials using
an Abbott Cell Dyn 3500 (Abbott Laboratories, Abbott Park, IL, USA) automated hematology
analyzer. Serum samples were analyzed for a complete metabolic panel using a calibrated Dade
Behring Dimension RXL (Siemens AG, Munich, Germany) automated clinical chemistry analyzer.
The coefficient of variation (CV) for the tests using this analyzer was similar to previously published
data for these tests (range: 1.0 to 9.6%) [46]. Serum insulin, adiponectin, and leptin were determined
using commercially available immuno-absorbent assay (ELISA) kits (Diagnostic Systems Laboratories,
Webster, TX, USA) in conjunction with a Wallac Victor-1420 microplate reader (Perkin-Elmer Life
Sciences, Boston, MA, USA) according to kit specifications. Intra-assay and inter-assay coefficients of
variation were 4–7% for insulin, 3–4% for adiponectin, and 2–8% for leptin. The homeostasis model
assessment for estimating insulin resistance (HOMAIR) was calculated as the product of fasting glucose
multiplied by fasting insulin expressed in conventional units divided by 405 [47].

3.6. Statistical Analysis

Data were analyzed using IBM® SPSS® version 25 Statistics for Windows (IBM Corp., Armonk,
NY, USA). Baseline variables were analyzed using one-way analysis of variance (ANOVA). Related
variables were analyzed using univariate, multivariate and repeated measures general linear model
(GLM) statistics. The overall multivariate Wilks’ Lamda time and group × time interaction p-levels
were reported in tables along with Greenhouse–Geisser univariate tests, time and group × time
effects, and between-subject group effects. Delta values (post—pre) as well as percent change from
baseline values were calculated on select variables in order to normalize any baseline differences
among groups and analyzed by one-way ANOVA with least significant difference (LSD) post-hoc
analyses. Delta data are presented as mean changes from baseline with 95% confidence intervals
(CIs). Mean changes with 95% CIs completely above or below baseline are considered significantly
different [48]. Previous research in our lab demonstrated that an n-size of 20 per group was sufficiently
powered to detect significant differences among diet groups in primary outcome variables [29–33,35]
Data were considered significant when the probability of type I error was 0.05 or less and statistical
trends toward significance if the p-level ranged between 0.05 and 0.10. If a significant interaction alpha
level was observed, least significant difference (LSD) post-hoc analyses was performed to determine
where significance was obtained. All data are represented as means ± standard deviations (SD) unless
otherwise noted.

4. Results

4.1. Participant Demographics

Table 1 presents participant demographics. One-way ANOVA revealed that there were no
statistically significant differences among groups at baseline for descriptive characteristics. Participants
were aged 65.9 ± 4.6 years (range 60–75), 161 ± 5 cm tall, weighed 78.6 ± 10.6 kg with 43.5 ± 3.6%
body fat, and had a body mass index of 30.5 ± 4.1 kg/m2.
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Table 1. Baseline demographics.

Variable E HC HP p-Value

Age (years) 66.0 ± 4.3 63.3 ± 4.8 65.5 ± 5.2 0.87
Weight (kg) 76.0 ± 9.5 78.6 ± 10.7 81.6 ± 11.4 0.29
Height (cm) 159.6 ± 3.7 161.3 ± 4.9 161.7 ± 6.8 0.41

BMI (kg/m2) 29.9 ± 4.1 30.3 ± 4.0 31.3 ± 4.2 0.61
Body fat (%) 42.7 ± 3.7 44.2 ± 3.5 43.6 ± 3.7 0.46

Data are expressed as means ± standard deviations for the exercise only (E, n = 19), high carbohydrate (HC, n = 18),
and high protein (HP, n = 17) groups. BMI: body mass index.

4.2. Energy and Macronutrient Intake

Table 2 presents energy and macronutrient intake observed among groups throughout the study.
Significant overall multivariate interaction effects (p < 0.001) were observed among energy intake and
macronutrient intake expressed in absolute and relative terms. Univariate analysis of energy intake
absolute values revealed that energy intake averaged 1482 ± 41 kcal/d (mean ± standard error of mean
(SEM)) during the study with no significant interaction effects observed among groups. However,
participants in the HP group ingested significantly more protein (p = 0.002) and less carbohydrate
(p = 0.017) during the active weight loss portion of the diet (Phase II) compared to those in the HC
and E groups. A similar pattern was observed when expressing energy and macronutrient intake
relative to body weight. In this regard, adherence to the HP diet resulted in a 54% increase in relative
protein intake (0.83 ± 0.16 to 1.28 ± 0.54 g/kg/d) and a 23% decrease in relative carbohydrate
intake (2.50 ± 0.50 to 1.92 ± 0.56 g/kg/d) during the active weight loss phase. No significant
interaction effects were observed among groups in dietary fat intake. Participants did a fairly good job
meeting energy intake goals during Phase II of the diet (i.e., 1600 kcal/d). However, similar to our
previous reports [29–35], participants were less successful increasing energy intake during the weight
maintenance (Phase III) portion of the diet (i.e., 2100 kcal/d).

Table 2. Energy and macronutrient intake.

Variable Group Week Group
(SEM) Source p-Value

0 10 14

Energy intake E 1540 ± 397 1580 ± 399 1490 ± 485 1537 ± 70 Group 0.004
(kcal/d) HC 1339 ± 321 1253 ± 269 1260 ± 308 1283 ± 70 c Time 0.854

HP 1598 ± 415 1567 ± 292 1711 ± 352 1626 ± 74 b G × T 0.322
Mean 1489 ± 388 1462 ± 355 1478 ± 425

Protein E 68.3 ± 13.9 73.7 ± 11.0 bc 68.5 ± 17.0 c 70.2 ± 2.5 Group <0.001
(g/d) HC 57.1 ± 13.5 55.3 ± 9.5 ac 61.6 ± 16.1 a 58.0 ± 2.5 c Time 0.003

HP 66.1 ± 13.0 94.9 ± 31.4 †ab 86.2 ± 18.3 †ab 82.4 ± 2.6 b G × T 0.002
Mean 63.7 ± 14.1 73.9 ± 24.9 † 71.6 ± 19.6 †

Carbohydrate E 196 ± 70 182 ± 61 c 173 ± 62 187 ± 11 Group 0.290
(g/d) HC 166 ± 52 c 171 ± 56 168 ± 51 163 ± 11 Time 0.022

HP 203 ± 56 b 146 ± 44 †a 193 ± 67 181 ± 12 G × T 0.017
Mean 188 ± 61 173 ± 54 † 182 ± 60

Total fat E 58.6 ± 20.1 65.7 ± 19.4 b 67.4 ± 22.5 b 63.9 ± 3.7 b Group 0.002
(g/d) HC 48.9 ± 12.5 43.6 ± 9.9 ac 43.4 ± 14.9 ac 45.3 ± 3.5 ac Time 0.415

HP 54.9 ± 15.4 63.0 ± 21.9 b 58.7 ± 23.4 b 58.8 ± 3.5 b G × T 0.101
Mean 53.9 ± 16.3 57.1 ± 20.1 56.1 ± 22.5

Calories E 20.1 ± 6.0 21.5 ± 5.5 20.4 ± 7.0 20.9 ± 1.06 Group 0.015
(kcal/kg/d) HC 17.3 ± 4.5 a 16.8 ± 4.4 ac 17.0 ± 5.2 c 17.0 ± 1.06 ac Time 0.550

HP 19.8 ± 4.4 20.8 ± 4.6 22.7 ± 5.4 21.1 ± 1.12 G × T 0.234
Mean 19.3 ± 5.2 19.6 ± 5.2 19.9 ± 6.3
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Table 2. Cont.

Variable Group Week Group
(SEM) Source p-Value

0 10 14

Protein E 0.93 ± 0.24 1.01 ± 0.22 0.94 ± 0.27 0.96 ± 0.05 Group <0.001
(g/kg/d) HC 0.74 ± 0.19 a 0.73 ± 0.15 0.83 ± 0.26 0.77 ± 0.04 Time <0.001

HP 0.83 ± 0.16 1.28 ± 0.5 ab 1.15 ± 0.30 b 1.09 ± 0.05 ab G × T 0.001
Mean 0.83 ± 0.21 1.00 ± 0.40 † 0.97 ± 0.30 †

Carbohydrate E 2.66 ± 1.1 2.56 ± 0.9 c 2.47 ± 1.0 2.56 ± 0.16 Group 0.233
(g/kg/d) HC 2.14 ± 07 2.21 ± 0.8 2.14 ± 0.7 2.16 ± 0.16 Time 0.127

HP 2.50 ± 0.5 1.92 ± 0.5 a 2.54 ± 0.9 2.32 ± 0.17 G × T 0.029
Mean 2.43 ± 0.80 2.24 ± 0.8 2.38 ± 0.9

Total fat E 0.74 ± 0.23 0.85 ± 0.27 0.80 ± 0.32 0.79 ± 0.05 Group 0.004
(g/kg/d) HC 0.63 ± 0.18 0.58 ± 0.14 0.59 ± 0.23 0.60 ± 0.05 ac Time 0.100

HP 0.73 ± 0.24 0.87 ± 0.30 0.90 ± 0.34 0.83 ± 0.05 G × T 0.072
Mean 0.70 ± 0.22 0.76 ± 0.28 0.76 ± 0.32

Data are expressed as means ± standard deviations for the exercise only (E, n = 19), high carbohydrate (HC, n = 18))
and high protein (HP, n = 17) groups. General linear model analysis of absolute values revealed overall Wilks’
Lambda time (p = 0.002) and group × time (p = 0.001) effects. General linear model analysis of relative diet intake
values revealed overall Wilks’ Lambda time (p = 0.002) and group × time (p = 0.002) effects. Greenhouse–Geisser
univariate p-levels are listed for group (G), time (T), and group × time (G × T) interaction effects. † represents
p < 0.05 difference from baseline value. a = p < 0.05 difference from E; b = p < 0.05 difference from HC; c = p < 0.05
difference from HP.

4.3. Anthropometrics, Body Composition, and Resting Energy Expenditure

Table 3 presents body composition, anthropometric, and resting energy expenditure data observed
among groups during the study. A significant overall multivariate interaction effect (p < 0.001) was
observed for body composition variables. Univariate analysis revealed significant interaction effects
(p < 0.005) were observed among groups in body weight, fat mass, and percent body fat. Analysis
of mean changes from baseline with 95% CI (Figure 3) indicated that participants in the HP group
lost significantly more weight (E −0.87 ± 1.56, CI −1.63, −0.12; HC –2.12 ± 2.36, CI −3.30, −0.95;
HP −4.07 ± 2.59, CI −5.4, −2.7 kg, p < 0.001) and fat mass (E −0.82 ± 1.12, CI −1.36, −0.28; HC
−1.90 ± 1.38 CI −2.59, −1.21; HP −3.35 ± 2.02, CI −4.39, −2.3; kg, p < 0.001) while changes in
body fat percentage were greater in the HP compared to E groups (E −0.89 ± 1.49, CI −1.61, −0.18;
HC −1.94 ± 1.39, CI −2.64, −1.25; HP −2.71 ± 1.51, CI −3.49, −1.93%, p = 0.002). In percentage
terms, participants in the HP group experienced a more clinically impactful reduction in fat mass
loss (E −2.7 ± 3.8, CI −4.6, −0.9; HC −5.9 ± 4.2, CI −8.0, −3.9; HP −10.2 ± 5.8, CI −13.1, −7.2%,
p = 0.003) and percent body fat (E −2.0 ± 3.5, CI −3.7, −0.3; HC −4.3 ± 3.2, CI −5.9, −2.7; HP
−6.3 ± 3.5, CI −8.1, −4.5%, p = 0.002) than those in the HC and E groups. Fat-free mass increased
over time in all groups with no significant differences observed among groups (E 0.36 ± 1.49, CI
−0.36, 1.07; HC 0.73 ± 1.55, CI −0.04, 1.49; HP 0.22 ± 1.51, CI −0.56, 1.00 kg, p = 0.596). An overall
significant interaction was also observed among anthropometric measurements (p = 0.017) with waist
and hip circumferences significantly decreasing from baseline. Analysis of mean changes with 95% CIs
revealed that greater changes were observed in the HP group in waist circumference (E −0.90 ± 1.83,
CI −1.78, −0.02; HC −1.55 ± 2.94, CI −3.01, −0.09; HP −3.62 ± 3.57, CI −5.46, −1.78 cm, p = 0.017)
while changes in hip circumference tended to differ among groups (E −1.60 ± 2.42, CI −2.77, −0.43;
HC −1.98 ± 349, CI −3.71, −0.24; HP −3.88 ± 2.86, CI −5.35, −2.42 cm, p = 0.057). When expressed as
percent changes from baseline, participants in the HP group experienced significantly greater changes
in waist circumference (E −1.0 ± 2.1, CI −2.0, 0.02; HC −1.6 ± 3.3, CI −0.3, 0.03; HP −3.9 ± 3.7,
CI −5.8, −2.0%, p = 0.019). Resting energy expenditure did not significantly decrease over time in
response to the diet and exercise intervention or differ among groups.
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Table 3. Body composition, anthropometric, and resting energy expenditure data.

Variable Group Weeks Group
(SEM) Source p-Value

0 10 14

Body weight E 75.99 ± 9.5 75.11 ± 9.7 75.12 ± 9.7 75.39 ± 2.4 Group 0.606
(kg) HC 78.63 ± 10.7 75.50 ± 11.1 † 76.50 ± 11.1 † 77.15 ± 2.5 Time <0.001

HP 81.59 ± 11.4 77.63 ± 10.8 † 77.71 ± 10.8 † 78.94 ± 2.6 G × T <0.001
Mean 78.63 ± 10.6 76.34 ± 10.4 † 78.34 ± 10.4

Fat mass E 29.89 ± 6.2 29.05 ± 6.0 † 29.07 ± 6.1 † 29.34 ± 1.4 Group 0.772
(kg) HC 31.89 ± 6.7 30.43 ± 6.6 † 29.99 ± 6.5 † 30.77 ± 1.4 Time <0.001

HP 32.78 ± 6.0 29.98 ± 5.7 † 29.42 ± 5.6 † 30.73 ± 1.5 G × T <0.001
Mean 31.46 ± 6.3 29.80 ± 6.0 † 29.49 ± 6.0 †

Fat free mass E 39.66 ± 4.1 40.1 ± 4.2 40.01 ± 4.3 39.95 ± 1.2 Group 0.351
(kg) HC 39.86 ± 4.6 40.1 ± 4.9 40.59 ± 5.4 40.19 ± 1.2 Time 0.064

HP 42.40 ± 5.8 42.09 ± 6.1 42.42 ± 6.6 42.23 ± 1.3 G × T 0.427
Mean 40.53 ± 4.9 40.75 ± 5.1 40.96 ± 5.5

Body fat E 42.68 ± 3.7 41.69 ± 3.7 † 41.78 ± 3.5 † 42.05 ± 0.8 Group 0.584
(%) HC 44.17 ± 3.5 42.85 ± 3.5 † 42.23 ± 3.3 † 43.08 ± 0.8 Time <0.001

HP 43.57 ± 3.8 41.45 ± 3.8 † 40.86 ± 4.3 † 41.96 ± 0.9 G × T 0.005
Mean 43.46 ± 3.6 42.00 ± 3.6 † 41.63 ± 3.7 †

Bone mineral E 1531 ± 183 1527 ± 179 1535 ± 182 1531 ± 68 a Group 0.045
content (g) HC 1613 ± 214 1615 ± 212 1608 ± 227 1612 ± 70 Time 0.349

HP 1789 ± 427 1767 ± 454 1788 ± 439 1781 ± 72 c G × T 0.365
Mean 1640 ± 305 1632 ± 312 1639 ± 312

Waist E 88.4 ± 7.9 88.3 ± 7.3 87.5 ± 7.6 88.1 ± 2.2 Group 0.978
circumference HC 89.7 ± 12.9 88.9 ± 12.0 88.2 ± 12.1 89.9 ± 2.2 Time <0.001

(cm) HP 91.2 ± 8.2 89.1 ± 7.5 † 87.6± 7.6 † 89.3 ± 2.3 G × T 0.016
Mean 89.7 ± 9.0 88.7 ± 9.0 † 87.8 ± 9.2 †

Hip E 107.6 ± 8.1 107.0 ± 8.1 106.0 ± 7.4 106.9 ± 1.7 Group <0.001
circumference HC 109.9 ± 5.5 108.0± 6.3 107.9 ± 7.6 † 108.6 ± 1.7 Time <0.001

(cm) HP 112.7 ± 8.8 109.4 ± 8.2 † 108.8 ± 7.9 † 110.3 ± 18 G × T 0.019
Mean 110.0± 7.5 108.1± 7.5 † 107.5 ± 7.6 †

Waist:hip E 0.822 ± 0.05 0.826 ± 0.08 0.827 ± 0.06 0.825 ± 0.01 Group 0.684
ratio HC 0.815 ± 0.09 0.821 ± 0.08 0.815 ± 0.07 0.817 ± 0.02 Time 0.180

HP 0.810 ± 0.05 0.815 ± 0.05 0.805 ± 0.05 0.810 ± 0.02 G × T 0.616
Mean 0.816 ± 0.07 0.821 ± 0.06 0.816 ± 0.06

Resting energy
expenditure

(kcal/d)

E 1,317 ± 184 1,341 ± 198 1,345 ± 168 1,334 ± 39 Group 0.923
HC 1,313 ± 199 1,358 ± 211 1,356 ± 181 1,342 ± 37 Time 0.065
HP 1,311 ± 151 1,361 ±130 1,287 ± 176 1,320 ± 43 G × T 0.356

Mean 1,314 ± 178 1,353 ± 183 1,332 ± 174

Data are expressed as means ± standard deviations for the exercise only (E, n = 19), high carbohydrate (HC, n = 18)),
and high protein (HP, n = 17) groups. General linear model analysis revealed overall Wilks’ Lambda time (p < 0.001)
and group × time (p < 0.001) effects for body composition variables and overall Wilks’ Lambda time (p < 0.001)
and group × time (p < 0.017) effects for anthropometric measurements. Greenhouse–Geisser univariate p-levels are
listed for group (G), time (T) and group × time (G × T) interaction effects. † represents p < 0.05 difference from
baseline value. a = p < 0.05 difference from E; c = p < 0.05 difference from HP.
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Figure 3. (A) Body weight, (B) fat mass, (C) fat-free mass, (D) body fat. Mean changes with 95%
confidence intervals (CIs) from baseline in body composition variables for the exercise only (E), higher
carbohydrate (HC), and higher protein (HP) groups. Means and 95% CIs completely below baseline
represent a significant change over time. a = p < 0.05 difference from E; b = p < 0.05 difference from HC;
c = p < 0.05 difference from HP.

4.4. Hematological Markers

Table 4 presents fasting glucose homeostasis, appetite hormones, and lipid-related variables.
Significant time effects (p < 0.001) were observed among glucose homeostasis variables with insulin
and insulin sensitivity improving among all groups over time. However, no significant interactions
were observed among groups. Mean change and 95% CI analysis revealed that fasting glucose
decreased to a greater degree (p < 0.031) in the HP compared to the HC group (E −1.89 ± 10, CI
−6.88, 3.10; HC 5.13 ± 16, CI –3.02, 13.3; HP −5.93 ± 17, CI −14.6, 2.8%, p = 0.089). Significant
overall time (p < 0.001) and group × time (p < 0.001) effects were seen in appetite-related hormones.
Specifically, post hoc analysis revealed that participants in the HP group experienced a significantly
greater increase in adiponectin (E 43.1 ± 76, CI 6.34, 79.8; HC −27.8 ± 33, CI –44.5, −11.3; HP 52.4 ± 79,
CI 11.9, 92.8%, p = 0.001) than the HC group and the HP group observed a greater reduction in leptin
(E −1.80 ± 34, CI −18.1, 14.5; HC 43.8 ± 60, CI 16.5, 71.2; HP −26.5 ± 70, CI −62.6, 9.6%, p = 0.001)
than the HC and E groups. In percentage terms, greater changes were seen in the HP group in
adiponectin (E 43.1 ± 76.2, CI 6.3, 79.8; HC −27.9 ± 33.3, CI −44.4, −11.3; HP 52.4 ± 78.6, CI −11.9,
92.8%, p = 0.001) and leptin levels (E −1.80 ± 33.8, CI −18.1, 14.5; HC 43.8 ± 55.0, CI 16.5, 71.1;
HP −26.5 ± 70.3, CI −62.6, 9.6%, p = 0.001). Finally, no significant overall time effects were seen
in lipid-related variables (p = 0.124) while these variables tended to interact (p = 0.056). Univariate
analysis revealed significant interactions in triglycerides among groups where values in the HC and
E groups increased from baseline after 10 weeks, while remaining consistent in the HP group. Table
S1 presents serum liver and muscle enzyme related panels. Overall multivariate time (p < 0.001) and
interaction (p < 0.001) effects were observed in clinical markers of liver function. Univariate analysis
revealed some variable changes over time and among groups in alanine amino transferase (ALT)
and total bilirubin (TBIL) responses, but these values remained well-within normal limits and were
generally lower than baseline values. No overall time (p = 0.274), or interaction effects (p = 0.122) were
observed among serum protein and enzyme levels. Table S2 presents whole blood complete cell count
data while Table S3 presents lymphocyte percent differentials. Although overall time effects were seen
(p < 0.001) in whole blood white and red cell blood count analysis, no significant interactions were
observed (p = 0.342). Moreover, changes, if any, were small and well within clinical norms for older
individuals. No significant multivariate time (p = 0.394) or group × time (0.664) effects or univariate
effects were seen in percentage of lymphocytes.
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Table 4. Fasting serum hormone and metabolic markers.

Variable Group Weeks Group
(SEM) Source p-Value

0 10 14

Glucose E 109.0 ± 21 108.3 ± 23 106.5 ± 21 107.9 ± 5 Group 0.400
(mg/dL) HC 96.8 ± 14 98.4 ± 9 100.2 ± 10 98.5 ± 5 Time 0.335

HP 114.5 ± 61 105.3 ± 26 99.5 ± 19 106.4 ± 5 G × T 0.295
Mean 103.7 ± 37 104.1 ± 21 102.2 ± 18

Insulin E 11.1 ± 6.5 14.0 ± 8.0 17.1 ± 9.5 14.1 ± 1.9 Group 0.459
(µU/mL) HC 10.1 ± 6.5 9.7 ± 5.9 16.1 ± 7.7 12.0 ± 1.9 Time <0.001

HP 12.7 ± 12.8 15.3 ± 10.9 18.1 ± 12.3 15.4 ± 2.0 G × T 0.486
Mean 11.3 ± 8.8 13.0 ± 8.0 17.1 ± 9.8 †

Insulin sensitivity E 3.17 ± 2.4 3.80 ± 4.5 4.61 ± 2.8 3.86 ± 0.6 Group 0.308
(HOMAIR) HC 2.47 ± 1.6 2.39 ± 1.5 3.96 ± 1.9 2.94 ± 0.6 Time <0.001

HP 3.67 ± 3.8 4.46 ± 4.4 4.86 ± 4.3 4.33 ± 0.7 G × T 0.527
Mean 3.10 ± 2.7 3.53 ± 3.1 4.47 ± 3.1 †

Adiponectin E 11.5 ± 5.7 10.3 ± 3.9 16.6 ± 14.2 12.8 ± 1.8 Group 0.844
(µg/mL) HC 13.7 ± 6.1 13.1 ± 4.8 9.5 ± 5.1 a 12.1 ± 1.8 Time 0.007

HP 14.0 ± 7.7 6.5 ± 2.6 † 23.1 ± 25.1 †b 14.6 ± 1.9 G × T 0.002
Mean 13.1 ± 6.5 10.1 ± 4.7 † 16.3 ± 17.3 †

Leptin E 36.7 ± 13.4 c 31.3 ± 23.2 35.2 ± 17.5 b 34.4 ± 3.5 Group 0.218
(ng/mL) HC 36.7 ± 16.4 c 32.8 ± 19.5 50.4 ± 24.6 †ac 39.9 ± 3.6 Time <0.001

HP 61.5 ± 18.6 ab 37.9 ± 14.5 † 38.4 ± 19.7 †b 45.9 ± 3.7 G × T <0.001
Mean 44.5 ± 19.7 33.9 ± 19.4 † 41.3 ± 21.4

Triglycerides E 141 ± 95 172 ± 125 †c 138 ± 89 bc 150 ± 19 Group 0.898
(mg/dL) HC 145 ± 65 160 ± 78 † 158 ± 66 c 154 ± 19 Time 0.186

HP 159 ± 81 149 ± 67 a 157 ± 84 a 155 ± 20 G × T 0.046
Mean 148 ± 80 161 ± 79 151 ± 79

Total cholesterol E 200 ± 36 215 ± 36 191 ± 31 202 ± 7 Group 0.343
(mg/dL) HC 199 ± 64 201 ± 27 199 ± 31 199 ± 7 Time 0.062

HP 214 ± 32 216 ± 28 204 ± 24 211 ± 7 G × T 0.470
Mean 204 ± 46 210 ± 31 198 ± 29

Low density E 115 ± 35 127 ± 28 115 ± 32 119 ± 6 Group 0.455
lipoprotein HC 114 ± 43 110 ± 21 109 ± 24 111 ± 6 Time 0.828
(mg/dL) HP 122 ± 25 123 ± 24 120 ± 25 121 ± 6 G × T 0.594

Mean 117 ± 35 120 ± 25 115 ± 27

High density E 54.1 ± 15.4 55.6 ± 16.2 55.3 ± 15.4 55.0 ± 3.0 Group 0.876
lipoprotein HC 55.06 ± 10.4 55.1 ± 11.2 57.3 ± 13.1 55.8 ± 3.1 Time 0.239
(mg/dL) HP 57.8 ± 18.9 55.5 ± 13.8 55.6 ± 12.9 56.3 ± 3.2 G × T 0.216

Mean 55.6 ± 15.0 55.4 ± 13.7 56.1 ± 13.7

Data are expressed as means ± standard deviations for the exercise only (E, n = 19), high carbohydrate (HC, n = 18))
and high protein (HP, n = 17) groups. General linear model analysis revealed overall Wilks’ Lambda time (p < 0.001)
and group × time (p < 0.308) effects for glucose and insulin-related variables; an overall Wilks’ Lambda time
(p < 0.001) and group × time (p < 0.001) effects for appetite related variables; and, an overall Wilks’ Lambda time
(p = 0.124) and group × time (p < 0.056) effects for lipid related variables. Greenhouse–Geisser univariate p-levels
are listed for group (G), time (T) and group × time (G × T) interaction effects. HOMAIR = homeostatic model
assessment for insulin resistance. † represents p < 0.05 difference from baseline value. a = p < 0.05 difference from E;
b = p < 0.05 difference from HC; c = p < 0.05 difference from HP.

4.5. Exercise and Functional Capacity

Table 5 depicts health and fitness-related variables. Multivariate analysis revealed that exercise
training improved resting hemodynamics over time (p = 0.047) with no significant interaction effects
(p = 0.662). Univariate analysis demonstrated that resting heart rate tended to decrease over time
(p = 0.074) while resting diastolic blood pressure was significantly reduced from baseline over time
(p = 0.032) with no significant interactions observed among groups in resting heart rate (p = 0.455),
systolic blood pressure (p = 0.814), or diastolic blood pressure (p = 0.39) responses. Significant time
effects (p < 0.001) were seen in peak aerobic capacity and 6-min walk test distance with no significant
differences observed among groups. The improved distance observed in 6-min walk test performance
(34.5 ± 39 m) exceeded the minimal clinically important differences reported in the literature of 14 m
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to 20 m [49,50] but were slightly below the substantial meaningful difference of 50 m [50]. Upper and
lower 1RM strength and bench press muscular endurance were significantly increased in all groups
over time with no differences observed among groups. Tables S4 and S5 present balance and functional
stability test results, respectively. Composite scores on the sensory organization and the limits of
stability test significantly improved over time in all groups. Additionally, there was evidence that lift
up index movement time, rising index, and left to right weight symmetry improved with training in
all groups. However, no significant interactions among groups were observed.

Table 5. Cardiovascular, aerobic capacity, and muscular strength and endurance measures.

Variable Group Weeks Group
(SEM) Source p-Value

0 14

Resting heart rate E 77.4 ± 12.6 72.0 ± 9.3 74.7 ± 2.4 Group 0.283
(bpm) HC 74.4 ± 12.8 73.9 ± 11.8 74.2 ± 2.4 Time 0.074

HP 74.1 ± 11.4 71.4 ± 11.6 72.7 ± 2.6 G × T 0.455
Time 75.4 ± 12.6 72.4 ± 10.8

Resting systolic E 125.7 ± 10.5 122.8 ± 13.2 124.3 ± 2.3 Group 0.038
blood pressure HC 124.6 ± 12.5 123.7 ± 14.1 124.18 ± 23 Time 0.238

(mmHg) HP 126.5 ± 16.3 121.9 ± 11.3 124.2 ± 2.4 G × T 0.814
Time 125.6 ± 13.0 122.8 ± 12.8

Resting diastolic E 77.8± 9.80 71.9 ± 7.8 74.8 ± 1.6 Group 0.330
blood pressure HC 73.3 ± 10.4 72.8 ± 9.4 73.1 ± 1.7 Time 0.032

(mmHg) HP 75.1 ± 9.5 70.9 ± 7.5 73.0 ± 1.7 G × T 0.379
Time 75.4 ± 9.9 71.9 ± 8.1 †

Peak VO2 E 17.70 ± 3.3 18.39 ± 3.2 18.05 ± 0.6 Group 0.110
(mL/kg/min) HC 15.53 ± 2.2 17.14 ± 2.8 16.34 ± 0.7 Time <0.001

HP 17.13 ± 3.7 19.29 ± 3.1 18.21 ± 0.7 G × T 0.227
Time 16.82 ± 3.2 18.26 ± 3.2 †

Walk test (6-min) E 496 ± 67 534 ± 59 516 ± 13 Group 0.218
(m) HC 517 ± 47 551 ± 40 533 ± 14 Time <0.001

HP 538 ± 70 570 ± 77 554 ± 14 G × T 0.860
Time 516 ± 63 551 ± 61 †

Bench press (1RM) E 21.4 ± 5.0 26.2 ± 3.3 23.8 ± 1.2 Group 0.536
(kg) HC 20.6 ± 5.6 23.4 ± 5.7 22.0 ± 1.2 Time <0.001

HP 20.6 ± 6.2 24.5 ± 4.5 22.5 ± 1.3 G × T 0.245
Time 20.9 ± 5.5 24.7 ± 4.7 †

Bench press E 127.8 ± 62 143.4 ± 43 135.6 ± 10 Group 0.237
endurance volume HC 98.5 ± 53 135.7 ± 58 117.1 ± 10 Time <0.001

(kg) HP 132.9 ± 43 148.0 ± 55 140.4 ± 11 G × T 0.568
Time 119.0 ± 55 142.1 ± 52 †

Leg press 1RM E 89.4 ± 32 110.0 ± 34 99.7 ± 8 Group 0.781
(kg) HC 82.7 ± 33 105.5± 37 94.1 ± 8 Time 0.025

HP 78.1 ± 32 106.2 ± 28 92.2± 8 G × T 0.636
Time 83.5 ± 32 107.2 ± 33†

Leg press E 936 ± 623 1182 ± 959 1059 ± 147 Group 0.792
endurance volume HC 839 ± 451 1114 ± 708 977 ± 143 Time 0.122

(kg) HP 1161 ± 732 1076 ± 375 1,118 ± 152 G × T 0.229
Time 972 ± 609 1125 ± 713

Data are expressed as means ± standard deviations for the exercise only (E, n = 19), high carbohydrate (HC, n = 18))
and high protein (HP, n = 17) groups. General linear model analysis revealed overall Wilks’ Lambda time (p = 0.047)
and group × time (p = 0.662) effects for resting hemodynamics, an overall Wilks’ Lambda time (p < 0.001) and
group × time (p = 0.578) effects for aerobic exercise capacity variables, and an overall Wilks’ Lambda time (p < 0.001)
and group × time (p = 0.152) effects for muscular strength and endurance-related variables. Greenhouse–Geisser
univariate p-levels are listed for group (G), time (T), and group × time (G × T) interaction effects. † represents
p < 0.05 difference from baseline value. 1RM: 1 repetition maximum. VO2: oxygen uptake.
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5. Discussion and Conclusions

Aging is associated with an increase in adiposity in sedentary individuals that increases the
prevalence of obesity and/or severity of comorbidities associated with obesity such as insulin resistance
and diabetes [1]. Sedentary lifestyle is also associated with loss of muscle mass and strength which
increases risk to falls and bone fracture as one ages, particularly in osteoporotic women [7,18,21].
Therefore, identifying strategies that can help overweight and/or obese older adults promote weight
and fat loss while maintaining muscle mass and strength may help reduce risk to obesity, age-related
comorbidities, and/or injuries. We have previously reported that adherence to a circuit-style resistance
exercise program and a higher protein low fat diet promoted greater weight and fat loss while
maintaining muscle mass and preserving resting energy expenditure to a greater degree in comparison
to following a traditional higher carbohydrate low fat diet in women under the age of 55 [29–35].
Moreover, this program promoted gains in aerobic capacity, muscular strength and endurance, and
improved markers of health and metabolic syndrome [29–35]. We hypothesized that incorporating
resistance exercise while maintaining a higher protein hypo-energetic diet may promote more favorable
changes in body composition in older individuals attempting to lose weight and fat mass compared to
adherence to a higher carbohydrate diet and/or exercise alone. Results of this study indicate that this
exercise and diet approach may be an effective way for older sedentary and overweight women to
achieve meaningful weight loss and improve markers of health and functional capacity.

5.1. Weight Loss

Obesity is a significant health issue particularly as one ages [1]. However, diets that are too
energy-restrictive promote weight loss at the expense of loss in muscle mass and/or reductions in
resting energy expenditure [1,49]. Given concerns over sarcopenia and loss of strength as one ages,
use of traditional energy deficit diet interventions may therefore exacerbate these conditions. Resistance
exercise and increasing dietary protein have been recommended as a means of maintaining muscle
mass and strength as one ages [17,25,27,50]. The reason for this is that resistance exercise stimulates
muscle protein synthesis which can help increase and/or maintain muscle mass [51]. Additionally,
digestion of dietary protein is less efficient as one ages, thereby increasing dietary protein needs [28].
There is also evidence that higher protein diets promote satiety, influence appetite hormones, and
associated with a greater energy expenditure due to an increased thermic of digesting and oxidizing
proteins, and improve glucose homeostasis [52].

Results from the present study indicate that adherence to a resistance-based exercise program
promoted modest improvements in weight loss and fat loss while maintaining fat free mass and resting
energy expenditure. Thus, encouraging older individuals to incorporate resistance exercise into their
exercise program can help maintain muscle mass. Further, participants consuming a hypo-energetic
diet that contained a higher amount of dietary protein experienced greater loss of weight and fat mass
than those ingesting a standard higher carbohydrate and low fat diet. In percentage terms, participants
in the HP group experienced a more clinically impactful reduction in fat mass loss and percent body
fat than those in the HC and E groups. Moreover, fat-free mass increased in all groups and REE was
well-maintained. Thus, this program promoted effective weight loss (i.e., fat loss) without a loss of fat
free mass or resting energy expenditure that is often associated with dieting. It should be noted that
the diet intervention used only increased daily protein intake from 0.83±0.16 to 1.28 ± 0.54 g/kg/d.
Therefore, although we called this a higher protein diet, this only represented a modest increase in
dietary protein intake above the Recommended Daily Allowance in the United States (i.e., 0.8 g/kg/d)
and within recommendations for older adults (i.e., 1–1.3 g/kg/d) [27,49] as well as active individuals
who engage in resistance training [53,54]. It is also interesting to note that fat-free mass and resting
energy expenditure were maintained in the HC, suggesting that the participants ingested enough
protein in their diet, in combination with the resistance exercise, to prevent the typical decline in
energy expenditure and muscle mass associated with weight loss.
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The present study findings are also consistent with our prior reports that adherence to
the circuit-style resistance exercise program and higher protein diet promotes greater fat loss
while maintaining muscle mass and resting energy expenditure in women under the age of
55 [29–35]. Similarly, but without exercise, energy restricted high protein diet (35%) compared to
an energy-restricted diet with lower protein (20%) resulted in greater fat loss and improvements
in cardio-metabolic profile variables in overweight and obese women (44 ± 9 years) [55]. These
observations of improved body composition have also been noted in older men (65 ± 5 years)
increasing their dietary protein intake from 97 ± 79 to 164 ± 89 g/d (1.26 to 2.12 g/kg/d) without
caloric restriction compared to controls [20]. Finally, a report from Lee and colleagues [56] showed that
adherence to a higher protein/low fat hypo-energetic diet (32% protein, 12% fat) was more efficacious
in promoting fat loss than adherence to a lower protein hypo-energetic diet (22% protein, 12% fat) in
overweight men and women.

5.2. Markers of Health

Results of the present study indicated that participation in this exercise and diet intervention
promoted general improvements in a number of markers of health. For example, significant time
effects were seen in waist circumference (2.1 ± 3.3%), hip circumference (−2.2 ± 2.7%), resting
heart rate (−2.5 ± 15%), resting diastolic blood pressure (−3.4 ± 15%), fasting insulin (93.7 ±
140%), HOMAIR (91.8 ± 137%), and adiponectin (22.3 ± 74.1%) levels. Participants in the HP group
experienced significantly greater changes in waist circumference, blood glucose, adiponectin, and
leptin levels. Moreover, no clinically significant changes were seen in clinical blood profiles. These
findings are consistent with our prior reports in younger women [29–35]. Additionally, they are
consistent with reports indicating that exercise and/or diet-induced weight loss improves markers of
health [20,29–35,45,55], insulin sensitivity [4,20,29,31,32,35,55,57–62], and can positively affect appetite
hormone regulation [30–32,35,57,58,63,64]. Moreover, these findings are consistent with reports that
replacing some dietary carbohydrate with protein in the diet may promote greater benefits for weight
loss, body composition, blood lipids, and/or blood glucose management. Results also support
contentions that this exercise and diet intervention is well-tolerated in healthy older women.

5.3. Functional Capacity

One of the goals of encouraging older individuals to exercise is to maintain cardiovascular
and musculoskeletal health in order to reduce risk to chronic disease, falls, and injury [20–22,24].
Results of the present study indicate that this exercise program was effective in improving markers
of fitness, strength, and functional capacity. In this regard, participants experienced a 10.8 ± 23.9%
improvement in peak aerobic capacity, a 7.2 ± 8.9% increase in distance completed during a 6-min
walk test, a 22.5 ± 26.7% increase in upper extremity maximal strength, a 39.9 ± 75.6% increase in
upper extremity muscular endurance, a 33.6 ± 37.2% increase in low extremity maximal strength,
and a 27.1 ± 65.9% increase in lower extremity muscular endurance. The improved distance observed
in 6-min walk test performance (34.5 ± 39 m) exceeded the minimal clinically important differences
reported in the literature of 14 m to 20 m [42,43] but were slightly below the substantial meaningful
difference of 50 m [42]. Moreover, significant improvements were observed in several balance-related
functional capacity tests. These findings support contentions that older individuals can significantly
benefit from participation in a structured exercise program and this could play an important role in
reducing risk to falls and injury [19–22,45,65]. However, increasing the proportion of dietary protein
during the diet phase did not promote greater improvement in fitness, strength, and/or functional
capacity than those in the HC or E groups.

5.4. Conclusions

Results from this study indicate that older but otherwise healthy women following a higher
protein diet while participating in a circuit-style resistance-exercise program experienced greater
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loss in body weight, fat mass, percent body fat, and waist circumference than women following a
higher carbohydrate weight loss diet. Additionally, weight loss can be achieved in this population
without significant reductions in fat-free mass or resting energy expenditure whether exercising alone
or following the HC or HP diets. Participants in the HP group also experienced better management of
blood glucose and appetite-related hormones, while all participants experienced improvement in a
number of health, fitness, and functional capacity related variables. Results support recommendations
that older individuals participate in resistance-training [4,19,20,22,50,53,54,66,67] and consume a higher
proportion of protein in their diet in order to maintain muscle mass [4,26–28,53]. However, future
research is needed to confirm results in a larger population of healthy older individuals as well as
individuals who have medical conditions in which exercise and/or weight loss may provide benefits.
Additionally, it is necessary to continue to investigate the effects of different diet and exercise strategies
on markers of health in older individuals in order to identify effective strategies to reduce risk of
and/or manage chronic disease and improve quality of life.
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