

Hamstrings to Quadriceps Peak Torque Ratios are Similar Between **Positions in Male College Rugby Athletes**

AVA L. DENNER, AMANDA G. WARE, KYLE L. SUNDERLAND Exercise and Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO 63301

Introduction

- ➢Rugby is a physically demanding sport played all over the world and ACL injuries have resulted in the most missed time in elite rugby athletes
- >ACL injuries likely happen due to muscular force production not adequately dampening the load on the knee joint during high velocity movements such as cutting and jump landing.
- >Quadriceps and hamstrings co-contract during dynamic movements to assist in stabilizing the knee joint.
- >The quadriceps and hamstrings act as antagonists and agonists, respectively, to the ACL in anterior knee shear loading.
- >Decreased hamstrings strength relative to quadriceps strength (H:Q) is a potential risk factor for lower extremity injuries including ACL injuries.

Purpose

 \succ To determine the hamstrings to quadriceps ratio at varying angular velocities in healthy male collegiate rugby athletes and compare by field position in the dominant leg

Methods

- >Thirty-eight male collegiate rugby athletes (20.4±1.5 years, 180.9±6.6 cm, 91.4±11.7 kg) volunteered for this study
- Forwards (n=22) and backs (n=16)
- Concentric knee extensors and flexors strength was determined in the dominant leg by isokinetic dynamometry at 60°/s, 180°/s, 240°/s and 300°/s.
- >Peak torques for knee extensors and flexors of the dominant leg were determined at each angular velocity
- >Hamstrings-to-quadriceps (H:Q) peak torque ratios were determined for the dominant leg at each angular velocity.

Results

 \succ There was no significant interaction effect for H:Q between legs at different angular velocities (p<0.05) and no significant main effect between right and left leg H:Q (p<0.05)

> There was a significant main effect for H:Q between angular velocities (p<0.05)

- 60°/s less than 180°/s, 240°/s, and 300°/s - No significant differences between 180°/s, 240°/s, and 300°/s

> There was no significant interaction for quadriceps peak torque between right and left legs at different angular velocities (p<0.05)

> There was a significant main effect for quadriceps peak torque between angular velocities (p<0.05)

 $-60^{\circ}/s > 180^{\circ}/s > 240^{\circ}/s > 300^{\circ}/s$

> There was no significant interaction for hamstrings peak torque between right and left legs at different angular velocities (p<0.05)

> There was a significant main effect for hamstrings peak torque between angular velocities (p<0.05)

 $-60^{\circ}/s > 180^{\circ}/s > 240^{\circ}/s > 300^{\circ}/s$

Conclusions

> While H:Q does beneficially increase from 60 deg/s to 180 deg/s, the lack of further increases beyond 180 deg/s may indicate a potential injury risk.

> Previous reports have shown increased (>60%) H:Q ratios at high angular velocities in male college athletes. These results provide potential for improved training to reduce ACL injury risk.

> Velocities required by the demands of the sport may simultaneously increase the ACL injury risk and improve neuromuscular imbalances in these athletes.

> Resisted training performed at higher velocities may improve the H:Q at the specific velocities and reduce these athletes ACL injury risk

 \succ Therefore, it is important for practitioners to evaluate H:Q across multiple angular velocities as the risk assessment may vary.