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Abstract Method 2: Time Domain Approach r=10.11u[2.3]u [4. 5]
Control theory is theory is a branch of mathematics focused on observing or For matrices E where it exists, we apply the pseudo-inverse 4000 - cT LY ; -
controlling a process governed by a dynamic equation. We use state-space i TN T . X
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notation to represent all meaningful information about of our process. This | | | 000 - X
means our processes are expressed in vector form. Typically, the state matrix is to both sides to obtain the corresponding square control system .
square. In this project, we consider a control system where the corresponding 2 (t) = Fx(t) 4+ v(t). 0004 * Az
state is over-determined, meaning there are more rows than columns. In addition, We then seek numerical results. 1000 - Xz

our state equation is on a time scale T, which allows us to consider discrete,
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continuous, or hybrid measurements. Here, we offer two methods to solve the Classical Electromechanical Model = 0] —— Q‘G’&G

dynamic system. Finally, we offer numerical results to a corresponding electrical Consider the classical synchronous machine model =
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A time scale T Is an arbitrary nonempty closed subset of the real numbers. 0 0 0 14 —0- AP, L=d

Examples of time scales include T = R, T = hZ for h > 0, the guantum numbers " - - —3000 -
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T=q¢*={q¢": keZ}U{0}forg>1T=P,;, = kL_JO[k(a +b), k(a+ b) + al, for « 21 is the rotor’s angular position 4000 . T ) r T r
a,b > 0, and the Cantor set. J = 15 IS the rotor's angular speed Time
= P, =1 pu(MW) is the mechanical power
Time Scale  Derivative integra " P s the change in mechanical pover NoSolution
= 9 = 0 is the equilibrium angular position Note that the control system
» /() = lim f( z)t f(s) F(1) dt Note: in this setting, the damping has been removed. | Ez2(t) = Az(t)
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pu(t) rerab has no solution since -
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where E'E= 1244
= Forward shift: o(t) is the next available point in T. 0 244
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State Components

" Graininess: u(t) = o(t) —t. does not have an inverse.
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The Model . . . Related/Future Projects
Consider the dynamic over-determined state equation = Formally introduce the necessary conditions for a unique solution.
Ez2(t) = Az(t) + u(t), 2(0) = x, —20 - = Be able to generalize the usual regressivity condition for the state matrix A
wilFere pased on corresponding Jordan blocks.
. | | | | | | | | | = Be able to express a matrix exponential in terms of these Jordan blocks.
= ¢ € R" represents the state 0.0 0.5 10 15 20 25 3.0 35 40 B - N o ,
= Find the controllability and observability conditions for these models on time
= u € R™ represents the control Time ccales
= E and A are m x n matrices such that m > n. °. . . | .
1=9 =052 = Establish the optimal control conditions/properties for these models on time
Here, we are not necessarily guaranteed a unique solution. e . scales.
Method 1: Frequency Domain Approach o = Establish the Kalman filter for these models on time scales.
: 1l = X;
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