

Workloads of Collegiate Female Lacrosse Athletes During a **Division II National Championship Season**

Abstract

There is a paucity of data on workloads in collegiate female lacrosse players. **PURPOSE:** Determine internal and external workloads of collegiate female lacrosse players. **METHODS:** Heart rate (HR), perceived exertion, and GPS data were analyzed from 19 collegiate female lacrosse players throughout an entire National Championship season. **RESULTS:** Except for average HR (p=0.494), workload variables were significantly less during training compared to games. Average practice duration was shorter average gameday duration (p<0.001). When considering workloads relative to duration, high-intensity accelerations (0.53±0.10 count/min vs 0.40±0.12 count/min, p<0.001) and decelerations (0.40±0.08 count/min vs 0.33±0.08 count/min, p<0.001) were significantly greater during practice days. All other workload variables were not significantly different when considering the duration of session. CONCLUSION: When examining workloads of collegiate female lacrosse, there was significantly less workload during practice compared to gamedays due to the increased duration of gameday.

Introduction

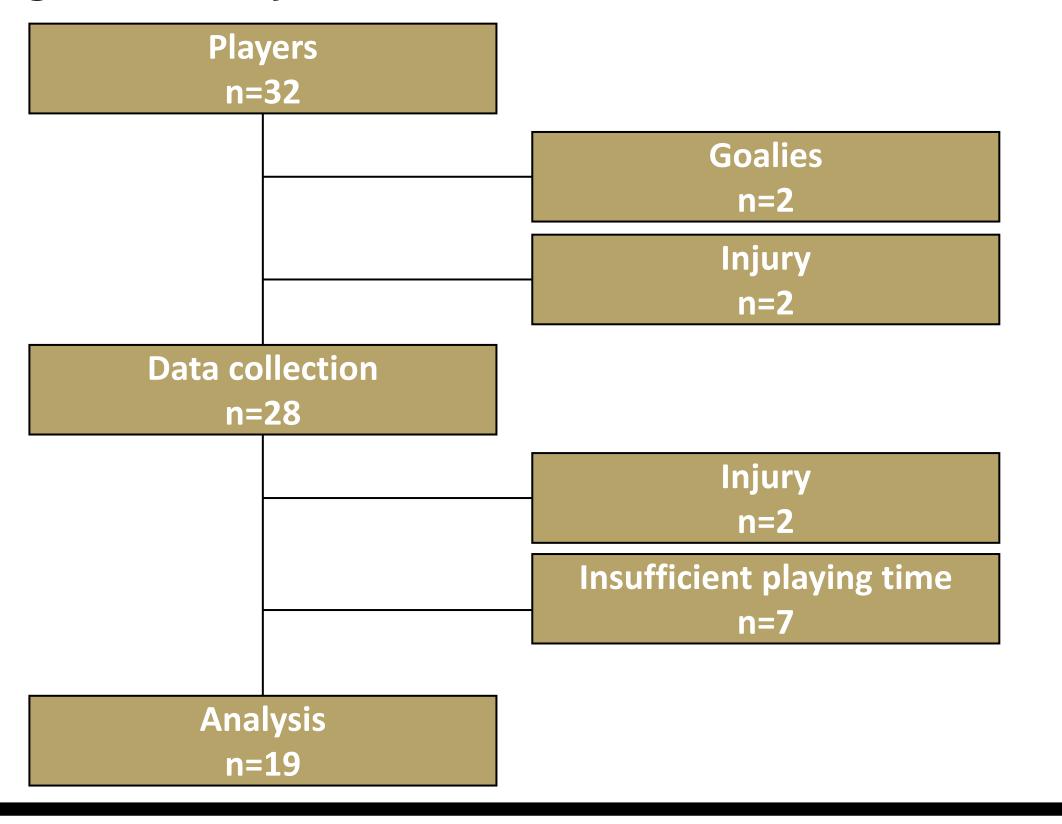
- \succ Lacrosse is known as one of the most strenuous team sports for women and physiological characteristics of female collegiate lacrosse athletes have positioned these athletes amongst the most fit.
- \succ External workloads are the physical demands being asked of the body and are commonly measured via GPS or accelerometers.
- Internal workloads are the physiological responses to the external workloads and can be measured objectively via heart rates (HR) or subjectively via ratings of perceived exertions (RPE).
- \succ The monitoring and adjustments of workload by coaches, trainers, and scientists has become commonplace in athletics with the goal of producing positive training adaptations.
- Few studies have investigated the internal and external workloads of NCAA women's lacrosse athletes throughout an entire competitive season.

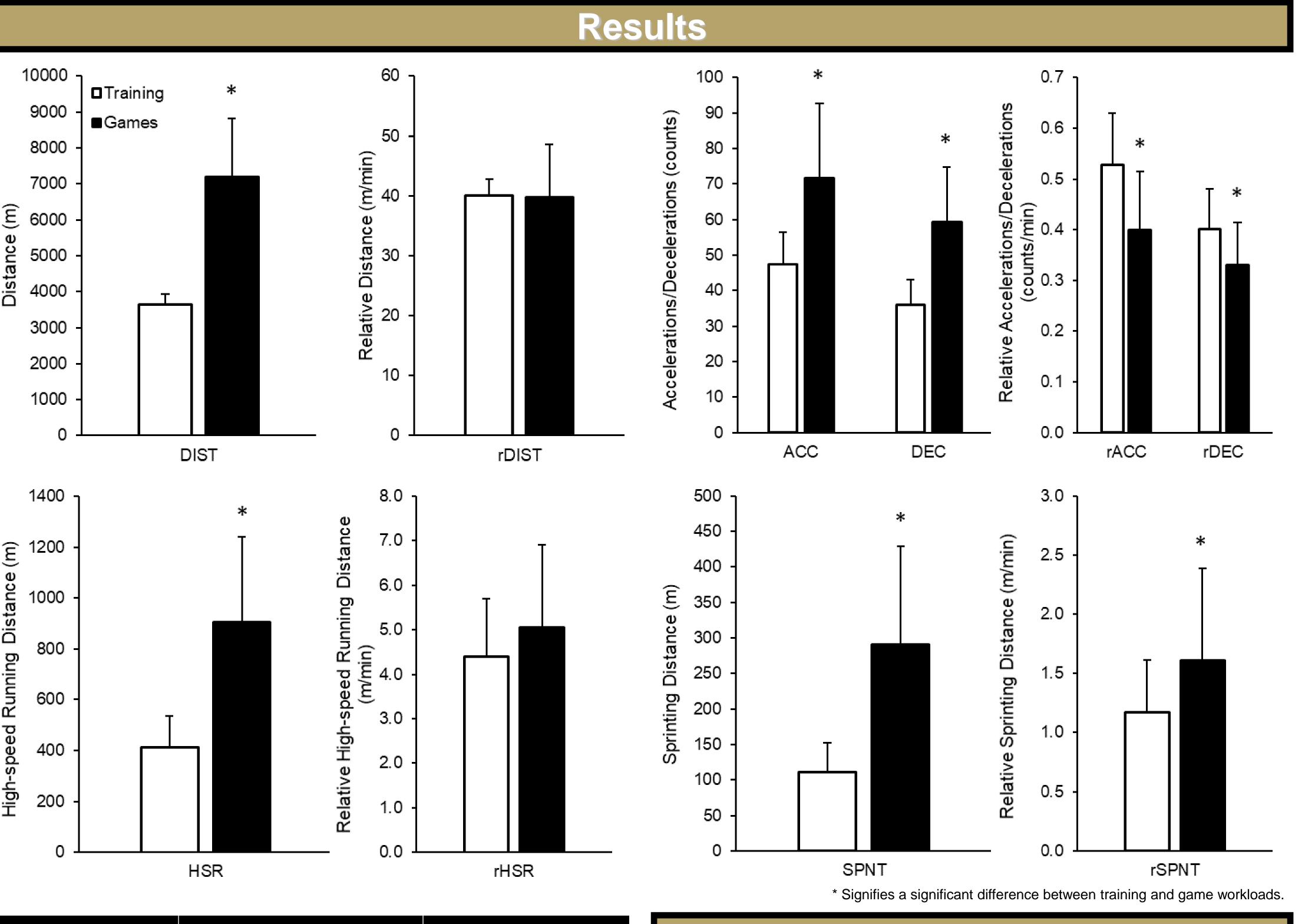
Purpose

 \succ This study aimed to determine the internal and external training and game loads of female collegiate lacrosse players during an entire competitive season.

REAL EXPERIENCE. **REAL** SUCCESS.

PAIGE J. SUTTON, PETEY W. MUMFORD, KYLE L. SUNDERLAND Exercise and Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO 63301


Methods


Participants

Participants
\succ Data was collected on 28 athletes during the season.
Due to early season injury (n=2) or lack of playing
time (n=7), data from 19 athletes (age 21 \pm 2 years,
height 167.3 \pm 5.6 cm, body mass 64.7 \pm 8.6 kg,
body fat 22.3 \pm 5.8 %) were analyzed (figure 1).
Procedures
Athletes wore Polar Team Pro (Polar Electro Inc.)
>All training (n=59) sessions and games (n=18) were
recorded from the beginning of team warm-up to the
completion of all sporting activities.
> An average of 56±4 training sessions and
17±2 games were analyzed per athlete.
Measurement of Internal Workload
> Training impulse (eTRIMP) was determined using
Edwards' formula:
> (time in z1*1) + (time in z2*2) + (time in z3*3) +
(time in z4*4) + (time in z5*5)
➤ z1=50-60% HRmax, z2=60-70% HRmax,
z3=70-80% HRmax, z4=80-90% HRmax,
z5=90-100% of HRmax
Session ratings of perceived exertion (sRPE) were
collected approximately 30-60 minutes following the
completion of each session.
> sRPE was multiplied by duration of session to
provide training load (sRPE-TL).
Measurement of External Workload
> The following GPS-derived metrics were utilized:
Total distance (TD) throughout entire session
High-speed running was distance covered at
$\geq 15 \text{ km} \cdot \text{h}^{-1}$.
- To kin i. Corint distance was distance sovered at

- Sprint distance distance was covered at \geq 19 km·h⁻¹.
- \succ Accelerations $\geq 2 \text{ m} \cdot \text{s}^{-2}$ were counted.
- \succ Decelerations \leq 2 m·s⁻² were counted.

Figure 1. Study flowchart

	Total Workloads		Rate of Workloads (per min)	
	Training	Games	Training	Games
Duration (min)	91.8 ± 0.9	181.4 ± 2.2*	-	-
Max HR (%)	94.5 ± 1.5	97.6 ± 1.7*	-	-
Avg HR (%)	69.5 ± 2.9	70.4 ± 4.7	-	-
sRPE	3.6 ± 0.4	5.7 ± 1.0*	-	-
sRPE-TL (AU)	340.1 ± 37.0	1048.0 ± 199.6*	-	-
eTRIMP (AU)	224.7 ± 26.9	464.9 ± 86.3*	2.5 ± 0.3	2.6 ± 0.5
Total distance (m)	3646.3 ± 273.5	7182.7 ± 1634.0*	40.0 ± 2.9	39.7 ± 8.8
High-speed distance (m)	411.6 ± 123.1	904.2 ± 335.2*	4.4 ± 1.3	5.1 ± 1.9
Sprint distance (m)	110.9 ± 42.1	290.6 ± 138.7*	1.2 ± 0.4	1.6 ± 0.8*
Accelerations (≥ 2 m·s ⁻²)	47.4 ± 9.0	71.8 ± 20.9*	0.5 ± 0.1	0.4 ± 0.1*
Decelerations (≤ -2 m⋅s ⁻²)	35.9 ± 7.1	59.3 ± 15.6*	0.4 ± 0.1	0.3 ± 0.1*

Acknowledgements This project was funded by the Lindenwood University **PRIDE** Fund

Summary

Champion women's Division II National lacrosse athletes averaged comparable running distances during training and games as previously reported Division I women's lacrosse athletes.

> Total internal and external workloads were greater during training compared to game days which was mostly due to significant differences in duration of training vs game days.

 \succ When accounting for duration, the rate at which workloads accumulated were similar on training and game days for most variables.

The higher rates of accelerations/decelerations along with the lower rates of sprint distances during training are likely due to more small-sided training.

> Coaches should examine the rate of workload accumulation during training as this analysis may provide meaningful feedback regarding athlete preparation for game days.