PHYSIOLOGICAL MEASUREMENTS
 PRE/POST 100-MILE ENDURANCE RACE

Exercise and Performance utrition Laboratory

Zavisiute, Karolina; Richmond, Scott; Kerksick, Chad, Sunderland, Kyle; Mumford, Petey
Lindenwood University, St. Charles, MO

INTRODUCTION

- The popularity of distance running has soared in recent decades with more people running ultra-marathons than ever before
The minimum ultra-marathon distance is anything above 26.2 miles
- There are few research studies available on 100 -mile distance running focused on elite/world class mountain ultra marathoners.
- There are few studies available on runners that represent recreational/non-elite runners who live and train in the Midwest.

The purpose of this study is to measure physiological changes and the impact a 100-mile endurance race can have on the body.

Demographics			
$\mathrm{n}=10$ males	Mean \pm SD	Minimum	Maximum
Age (years)	36.6 ± 14.1	20	60
Height (cm)	177.4 ± 7.2	165	186
Weight (kg)	75.4 ± 7.1	64.1	90
$\mathrm{VO}_{2}(\mathrm{~mL} / \mathrm{kg} / \mathrm{min})$	52.8 ± 6.3	45.7	64.1
Average finish time	26:10:36	20:39:50	33:27:59
METHODS			
Visit 1 1-week pre-race		Visit 2 ays post-race	
- Heart Rate - Body Mass - Height - Ultrasound - Biodex Balance - Resting Metabo - Body Water Ass - Muscular Stren - VO2max	sessment Rate ment	art Rate dy Mass rasound dex Balance dy Water Ass scular Stren	ssessment sment h

RESULTS

he only significant changes were observed in body fluids, braking force, and left/ right foot force at peak braking during countermovement jump testing.

Bioelectrical Impedance (BIA)

	Pre-race mean \pm SD	Post-race mean \pm SD	P value
BMI	24.41 ± 1.27	24.12 ± 1.97	0.349
TBW\%	61.30 ± 6.40	63.91 ± 3.70	0.164
ECF\%	41.51 ± 2.53	43.15 ± 1.89	0.030
ICF\%	58.50 ± 2.53	56.86 ± 1.89	0.030

CONCLUSION

- Body fluid increase was due to increase in plasma volume, which is very common in marathon distance runners (Knechtle et al. 2018). CMJ results showed significant changes in braking RDF
(pre 6570.0 ± 4832.3, post $3914.7 \pm 3036.9, p=0.007$).
- Significant changes observed during force at peak braking force - left leg (pre 823.8 ± 154.6, post $716.9 \pm 17.5, p=0.029$) - right leg (pre 816.5 ± 109.5, post $746.6 \pm 148.5, p=0.014$)

This change can possibly be attributed to the rocky terrain on which the race took place, as well as the shock observed running down hills.

Ultra endurance trail runners are very diverse, and the location and the terrain that runners train on can have a huge impact on their performance.

REFERENCES
Knechtle B, Rosemann T, Nikoladidis PT. Pacing and Changes in Body Composition in 48 h Ultra-Endurance
Running-A Case Study. Sports (Basel). 2018 ; (4): 136 . Published 2018 Nov 1 d doi: $10.3390 /$ sports 6040136 Running-A Case Study. Sports (Basel). 2018;6(4):136. Published 2018 Nov 1. doi: $10.3390 /$ sports604
Landers-Ramos RQ Dondero K, Nelson C. Ranadive SM. Prior SJ. Addison 0 .
 Published 2022 Sep 1. doi: 10.1371 1journal.pone.0273510
Nikoladidis PT, Clemente-Suärez VJ, Chlibkova D. Knechtle B. Tr
Characteristics in Men Recreational Marathon Runners: The Role of Soort Expoerietrce, Front Physiol .

LINDENWOOD

