

LINDENWOOD UNIVERSITY

175'

1175

INTRODUCTION

- The popularity of distance running has soared in recent decades with more people running ultra-marathons than ever before.
- The minimum ultra-marathon distance is anything above 26.2 miles.
- There are few research studies available on 100-mile distance running focused on elite/world class mountain ultra marathoners.
- There are few studies available on runners that represent recreational/non-elite runners who live and train in the Midwest.

The purpose of this study is to measure physiological changes and the impact a 100-mile endurance race can have on the body.

PHYSIOLOGICAL MEASUREMENTS **PRE/POST 100-MILE ENDURANCE RACE**

Zavisiute, Karolina; Richmond, Scott; Kerksick, Chad, Sunderland, Kyle; Mumford, Petey Lindenwood University, St. Charles, MO

RESULTS

The only significant changes were observed in body fluids, braking force, and left/ right foot force at peak braking during countermovement jump testing.

Bioelectrical Impedance (BIA)			
	Pre-race mean ± SD	Post-race mean ± SD	P value
BMI	24.41 ± 1.27	24.12 ± 1.97	0.349
TBW%	61.30 ± 6.40	63.91 ± 3.70	0.164
ECF%	41.51 ± 2.53	43.15 ± 1.89	<mark>0.030</mark>
ICF%	58.50 ± 2.53	56.86 ± 1.89	<mark>0.030</mark>

- down hills.
- performance.

- Published 2022 Sep 1. doi:10.1371/journal.pone.0273510

Exercise and Performance Nutrition Laboratory

CONCLUSION

Body fluid increase was due to increase in plasma volume, which is very common in marathon distance runners (Knechtle et al. 2018). • CMJ results showed significant changes in braking RDF (pre 6570.0 \pm 4832.3, post 3914.7 \pm 3036.9, p= 0.007). Significant changes observed during force at peak braking force: • left leg (pre 823.8 \pm 154.6, post 716.9 \pm 17.5, p= 0.029) • right leg (pre 816.5 \pm 109.5, post 746.6 \pm 148.5, p= 0.014). • This change can possibly be attributed to the rocky terrain on which the race took place, as well as the shock observed running

Ultra endurance trail runners are very diverse, and the location and the terrain that runners train on can have a huge impact on their

REFERENCES

• Knechtle B, Rosemann T, Nikolaidis PT. Pacing and Changes in Body Composition in 48 h Ultra-Endurance Running-A Case Study. Sports (Basel). 2018;6(4):136. Published 2018 Nov 1. doi:10.3390/sports6040136 • Landers-Ramos RQ, Dondero K, Nelson C, Ranadive SM, Prior SJ, Addison O. Muscle thickness and inflammation during a 50km ultramarathon in recreational runners. *PLoS One*. 2022;17(9):e0273510.

• Nikolaidis PT, Clemente-Suárez VJ, Chlíbková D, Knechtle B. Training, Anthropometric, and Physiological Characteristics in Men Recreational Marathon Runners: The Role of Sport Experience. *Front Physiol*. 2021;12:666201. Published 2021 Apr 12. doi:10.3389/fphys.2021.666201