
Lindenwood University Lindenwood University 

Digital Commons@Lindenwood University Digital Commons@Lindenwood University 

Faculty Scholarship Research and Scholarship 

8-2021 

Molecular Differences in Skeletal Muscle After 1 Week of Active Molecular Differences in Skeletal Muscle After 1 Week of Active 

vs. Passive Recovery From High-Volume Resistance Training vs. Passive Recovery From High-Volume Resistance Training 

Christopher G. Vann 
Auburn University 

Cody T. Haun 
LaGrange College 

Shelby C. Osbourn 
Auburn University 

Matthew E. Romero 
University of California, Los Angeles 

Paul A. Roberson 
The Pennsylvania State University 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers 

 Part of the Rehabilitation and Therapy Commons 

Recommended Citation Recommended Citation 
Vann, Christopher G.; Haun, Cody T.; Osbourn, Shelby C.; Romero, Matthew E.; Roberson, Paul A.; Mumford, 
Petey W.; Mobley, C. Brooks; Holmes, Hudson M.; Fox, Carlton D.; Young, Kaelin C.; and Roberts, Michael 
D., "Molecular Differences in Skeletal Muscle After 1 Week of Active vs. Passive Recovery From High-
Volume Resistance Training" (2021). Faculty Scholarship. 31. 
https://digitalcommons.lindenwood.edu/faculty-research-papers/31 

This Article is brought to you for free and open access by the Research and Scholarship at Digital 
Commons@Lindenwood University. It has been accepted for inclusion in Faculty Scholarship by an authorized 
administrator of Digital Commons@Lindenwood University. For more information, please contact 
phuffman@lindenwood.edu. 

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/faculty-research-papers
https://digitalcommons.lindenwood.edu/rs
https://digitalcommons.lindenwood.edu/faculty-research-papers?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/749?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lindenwood.edu/faculty-research-papers/31?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phuffman@lindenwood.edu


Authors Authors 
Christopher G. Vann, Cody T. Haun, Shelby C. Osbourn, Matthew E. Romero, Paul A. Roberson, Petey W. 
Mumford, C. Brooks Mobley, Hudson M. Holmes, Carlton D. Fox, Kaelin C. Young, and Michael D. Roberts 

This article is available at Digital Commons@Lindenwood University: https://digitalcommons.lindenwood.edu/
faculty-research-papers/31 

https://digitalcommons.lindenwood.edu/faculty-research-papers/31
https://digitalcommons.lindenwood.edu/faculty-research-papers/31


D
ow

nloaded
from

http://journals.lw
w
.com

/nsca-jscrby
BhD

M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3i3D

0O
dR

yi7TvSFl4C
f3VC

4/O
AVpD

D
a8KKG

KV0Ym
y+78=

on
11/03/2021

Downloadedfromhttp://journals.lww.com/nsca-jscrbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8KKGKV0Ymy+78=on11/03/2021

Original Research

Molecular Differences in Skeletal Muscle After 1
Week of Active vs. Passive Recovery From
High-Volume Resistance Training
Christopher G. Vann,1 Cody T. Haun,2 Shelby C. Osburn,1 Matthew A. Romero,3 Paul A. Roberson,4

Petey W. Mumford,5 C. Brooks Mobley,6 Hudson M. Holmes,1 Carlton D. Fox,1 Kaelin C. Young,1,7 and
Michael D. Roberts1,7

1School of Kinesiology, Auburn University, Auburn, Alabama; 2Department of Exercise Science, LaGrange College, Lagrange, Georgia;
3Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California;
4Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania;
5Department of Exercise Science, Lindenwood University, St. Charles, Missouri; 6Department of Physiology, University of Kentucky,

Lexington, Kentucky; and 7Edward Via College of Osteopathic Medicine—Auburn Campus, Auburn, Alabama

Abstract
Vann, CG,Haun, CT,Osburn, SC, Romero,MA, Roberson, PA,Mumford, PW,Mobley, CB, Holmes, HM, Fox, CD, Young, KC, and
Roberts, MD. Molecular differences in skeletal muscle after 1 week of active vs. passive recovery from high-volume resistance
training. J Strength Cond Res 35(8): 2102–2113, 2021—Numerous studies have evaluated how deloading after resistance training
(RT) affects strength and power outcomes. However, the molecular adaptations that occur after deload periods remain under-
studied. Trained, college-aged men (n5 30) performed 6 weeks of whole-body RT starting at 10 sets of 10 repetitions per exercise
per week and finishing at 32 sets of 10 repetitions per exercise per week. After this period, subjects performed either active (AR; n5
16) or passive recovery (PR; n5 14) for 1 week where AR completed;15% of the week 6 training volume and PR ceased training.
Variables related to body composition and recovery examined before RT (PRE), after 6 weeks of RT (POST), and after the 1-week
recovery period (DL). Vastus lateralis (VL) muscle biopsies and blood samples were collected at each timepoint, and various
biochemical and histological assayswere performed. Group3 time interactions (p, 0.05) existed for skeletal musclemyosin heavy
chain (MHC)-IIa mRNA (AR. PR at POST and DL) and 20S proteasome activity (post-hoc tests revealed no significance in groups
over time). Time effects (P, 0.05) existed for total mood disturbance and serum creatine kinase andmechano growth factor mRNA
(POST. PRE &D L), VL pressure to pain threshold and MHC-IIx mRNA (PRE&DL. POST), Atrogin-1 and MuRF-1 mRNA (PRE,
POST,DL), MHC-I mRNA (PRE, POST & DL), myostatin mRNA (PRE & POST, DL), and mechanistic target of rapamycin (PRE
. POST & DL). No interactions or time effects were observed for barbell squat velocity, various hormones, histological metrics,
polyubiquitinated proteins, or phosphorylated/pan protein levels of 4E-BP1, p70S6k, and AMPK. One week of AR after a high-
volume training block instigates marginal molecular differences in skeletal muscle relative to PR. From a practical standpoint,
however, both paradigms elicited largely similar responses.

Key Words: deload, skeletal muscle hypertrophy, skeletal muscle proteolysis

Introduction

Performance during resistance training (RT) has been suggested to
be influenced by fatigue that is accumulated over the time course of
training. One commonly used method to dissipate fatigue are pe-
riods of deloading or tapering where lower volumes or lower in-
tensities are used to facilitate recovery. A taper is defined as a
reduction in training stimulus through a reduction in training fre-
quency and training volume to reduce fatigue with the intent of
maximizing performance. Deloading is a practical term that refers
to a reduction of training volume loadwith similar aims to tapering
generally accomplished through a reduction in training volume and
training intensity. Conceptually, both strategies involve the ma-
nipulation of variables related to training with the specific aim of
mitigating fatigue and subsequently improving training outcomes.
Deload paradigms are commonly practiced in periodized training

to reduce fatigue and increase preparedness for successive training
cycles or competition (12). Using lower volumes and/or intensities
allows for the recovery or regeneration of the underlying physio-
logical systems that support performance (3).

Historically,much of the research performed on recovery fromRT
has focused on performance-based outcomes (e.g., repetition maxes,
force outputs, speed, etc.) or to mitigate injuries over longer duration
training studies (30). Reductions in fatigue resulting from a taper or
deload have been shown to result in increased muscle size, strength,
power, and speed (8). When evaluating strength, researchers have
shown that 2 weeks of tapering increased 1 repetition maximum
(1RM) of the barbell back squat and barbell bench press (26). Im-
portantly, although studies have examined the interaction of recovery
protocols on muscle size and strength using tapering protocols—
which would normally lead into competitive endeavors—little has
been performed evaluating different deloading paradigms.

Stone et al. (33) suggested that the 2 primary outcomes of
hypertrophy training are as follows: (a) positive changes in body
composition and (b) increases in short-term muscular endurance.
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Although training execution is critical for skeletal muscle hyper-
trophy, recovery tactics also play an integral role. Notably, sev-
eral studies have shown that allowing periods of time to recover
after strenuous training may help maximize the hypertrophic re-
sponse and promote increases in strength while also reducing the
potential for stagnation and overtraining during the training cycle
(23,29,34,35). In addition, periods of detraining (i.e., lighter load
and volume or no training) in resistance-trained men have been
shown to increase serum testosterone and decrease serum cortisol
levels (21), which may be beneficial for skeletal muscle hyper-
trophy. However, beyond the evidence presented above, little
work has been performed to evaluate physiological or molecular
changes from different deloading or taper structures following
periods of RT.

The aim of the current study was to evaluate the effect of an
active recovery (AR) and a passive recovery (PR) paradigm on
body composition, serum markers, muscle fiber cross-sectional
area (fCSA), and the expression of protein and mRNA targets in
skeletal muscle.We hypothesized that 1 week of AR vs. PRwould
lead to similar alterations in body composition and fCSA. How-
ever, because of the exploratory nature of this study, we did not
propose a hypothesis for serum markers or the molecular targets
in skeletal muscle.

Methods

Experimental Approach to the Problem

Before the start of the study, subjects were randomized into an
active or passive recovery condition. Subjects then underwent 6
weeks of whole-body high-volume RT before completing their
respective recovery paradigm. Subjects assigned to the AR group
completed ;15% of volume completed during week 6, whereas
subjects in the PR group ceased training for a period of 7 days.
Intervention design, testing procedures, molecular analyses, and
imaging methodologies are described in further detail below.

Subjects

Previously trained, college-aged men (n 5 30) were recruited for
this study and randomly assigned to anAR (n5 16) or PR (n5 14
mean 6 SD) condition of which was executed after 6 weeks of
high-volume RT. Subjects were required to have a self-reported
training age of 1 or more years defined as RT greater than 2 days
weekly over the course of a year. In addition, for subjects to
qualify to engage in the protocol, they had to squat equal to or
greater than 1.53 body mass. Notably, 1 subject was removed ex
post facto because of a lack of adherence to the study protocol.
Subject baseline characteristics can be found in Table 1. The age
range of subjects was 19–27 years old. This study was approved
by the Institutional Review Board at Auburn University (Protocol
#17-425 MR 1710) and conformed to the most recent standards
set by the latest revision of the Declaration ofHelsinki. Before any
data being collected, subjects provided verbal andwritten consent
which was conducted after an informational briefing where the
design, rationale, and purpose of the study were covered.

Procedures

Resistance Training and Deload Protocol. Before beginning the
training program, subjects were screened and familiarized with the
studydesign and technical parameters of each exercise (barbell [BB]
back squat, BB bench press, BB overhead press, BB stiff-legged

deadlift, and supinated grip machine lat pull-down). Screening and
testing of 3 repetition maximum (3RM) and a familiarization ses-
sion were conducted 3–7 days before the start of the study and
occurred under the direct supervision of research staff holding the
National Strength and Conditioning Association’s Certified
Strength and Conditioning Specialist credential. The 3RM was
used to calculate estimated 1RM which was used to dictate loads
for the subjects to use over the duration of the study.

Readers can find a more thorough description of the training
intervention in Haun et al. (10). In brief, subjects engaged in 6
weeks of voluminous RT starting at 10 sets of 10 repetitions per
week per exercise, accumulating sets over a 6-week period, and
ending at 32 sets of 10 repetitions per exercise, standardized at
60% of estimated 1RM. Exercises were performed in a com-
pound set of which the BB back squat was performed first, fol-
lowed by the BB pressing movement (BB bench press or BB
overhead press), the BB stiff-legged deadlift, and finally the su-
pinated grip lat pull-down. Rest between each compound set was
standardized to 2 minutes; however—if the subject felt prepared
to execute the next compound set—they were allowed to do so.
Importantly, the standardization of intensity at 60% of estimated
1RMwasmade in concert with data collected during a pilot of the
study design (n 5 2) and a review published by Poortmans and
Carpentier (24), suggesting a robust increase in myofibrillar
protein synthesis when training is completed at ;60% of 1RM.

Training occurred on M/W/F of each week. Importantly, the BB
bench press was substituted with BB overhead press on Wednesday
training sessions. After the 6-week RT intervention, subjects per-
formed either an AR or PR paradigm for a period of 1week (termed
“deload”; DL). The AR paradigm consisted of training sessions on
M/W/Fwith2 sets of 10 repetitions being completedonMondayand
Friday and 1 set of 10 repetitions being completed onWednesday of
which were standardized to 60% of estimated 1RM. The PR para-
digm ceased training for a period of 1 week. A schematic of the RT
and recovery paradigm can be found in Figure 1 below. Calculation
of total volume loadwas completed bymultiplying themass used for
each exercise (in kilograms) and the total number of repetitions
completed. The value generated for each exercise were summed to-
gether for a total training volume load.

Barbell velocity for the back squat was measured with a linear
position transducer (TENDO unit; TENDO Sports Machines,
Trencin, Slovak Republic) before the first session, before the last
training session, and on the Friday of the deload paradigm, sim-
ilar to methods used by Zourdos et al. (36).

PRE, POST, andDLTesting Sessions. Subjects reported for testing
in an overnight-fasted state on Saturday from 0630 to 1400 before

Table 1

Baseline characteristics.*†

Variable AR (n 5 16) PR (n 5 14) Total (n 5 30)

Age (y) 24 6 2 24 6 2 24 6 2

Training age (y) 5 6 3 6 6 2 5 6 3

Height (cm) 181 6 7 178 6 9 180 6 8

Body mass (kg) 82.1 6 10.5 83.8 6 12.8 82.9 6 11.5

BIS-measured FFM (kg) 67.9 6 8.4 68.4 6 10.9 68.1 6 9.5

BIS-measured fat Mass (kg) 14.2 6 3.9 15.5 6 5.6 14.8 6 4.7

Est. 1RM back squat (kg) 145 6 21 140 6 8 143 6 19

Squat relative to body mass 1.78 6 0.25 1.69 6 0.21 1.74 6 0.23

*AR5 active recovery; PR5 passive recovery; BIS5 bioelectrical impedance spectroscopy; FFM5
fat-free mass; 1RM 5 1 repetition maximum.

†Data are presented in mean 6 SD.
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beginning the study (PRE), 24 hours after the last training bout on
the sixth week of training (POST), and the Saturday after a 1-week
deload (DL). Although many tests were completed in conjunction
with these testing batteries and are described elsewhere (10), tests
specific to this data set are described below.

Hydration, Profile of Mood State, and AlgometryOn arrival to
each testing session, subjects were instructed to submit a urine
sample (;5 ml) to assess normal hydration-specific gravity levels
(,1.020 ppm) using a handheld refractometer (ATAGO,
Bellevue, WA). Subjects having a urine specific gravity $1.020
were instructed to consume ;400 ml of tap water and were
retested after 20 minutes. Subjects were also instructed to fill out
the profile of mood state (POMS) questionnaire published by
Grove and Prapavessis (7) to assess total mood disturbance
(TMD). Calculation of TMD was completed by summing
negative emotion scores and subtracting positive emotion scores
to determine an aggregate score. After completion of the POMS
survey, subjects underwent pressure-to-pain threshold (PPT)
testing on the outer portion of the right upper thigh using a
handheld algometer (Force Ten FDX; Wagner Instruments,
Greenwich, CT) using methods described by our laboratory (9).
In brief, the proximal, medial, and distal portions of the vastus
lateralis (VL) were marked for accuracy after which, focal
pressure was applied to the respective markings at a rate of ;5
N·s21 until the subject audibly indicated the sensation of painwas
felt. Notably, algometry measures were taken before biopsy
samples being collected, and the medial VL algometry measure
was taken ;2 cm from previous biopsy sampling points. The
reading on the algometer was then recorded and repeated until 3
measures were taken at each locus with ;30 seconds between
each measure. The average of the triplicate measures for each
locus was taken, and these were averaged for total PPT.

Ultrasound for Muscle Thickness and Bioelectrical
Impedance Spectroscopy for Body Composition After hy-
dration testing and completion of the POMS questionnaire,
subjects’ height and body mass were measured using a digital

column scale (Seca 769; Seca, Hanover, MD) with body masses
and heights collected to the nearest 0.1 kg and 0.5 cm, re-
spectively. Subjects then underwent ultrasound assessment to
determine muscle thickness of the right VL using a 3–12 MHz
multifrequency linear phase array transducer (Logiq S7 R2 Ex-
pert; General Electric, Fairfield, CT). These measurements were
standardized by using the midway point between the iliac crest
and patella of the right leg while standing upright and bearing a
majority of their body mass on the left leg. All ultrasound mea-
surements were taken by the same investigator (P.W.M.) to
minimize variability of measurement as suggested in Lohman
et al., and Lockwood et al. (15,16). Notably, test-retest reliability
was performed on 33 subjects at PRE which yielded an intraclass
correlation coefficient (ICC) of 0.994. After ultrasound
assessment, subjects underwent body composition testing using
bioelectrical impedance spectroscopy (BIS) as measured with the
SFB7 (ImpediMed, Ltd., Queensland, Australia). Subjects were in
a supine position for ;10 minutes, whereas height, body mass,
sex, and agewere entered. Electrical frequencies ranging from4 to
1,000 kHz were sent through a series of 4 electrodes (2 on the
dorsal surface of the right hand/wrist and 2 on the right ankle/
foot) in accordance with the manufacturer’s instructions.
Proprietary models were then used to derive total body water
(TBW), intracellular fluid (ICF), and extracellular fluid (ECF)
(20). Resultant values were used to extrapolate fat free mass
(FFM) by dividing the TBWby the assumed hydration constant of
0.732 (FFM 5 TBW/0.732) and fat mass (FM) by subtracting
FFM from total body mass (FM5 TBM2 FFM) as suggested in
Birzniece et al. (2). All BIS measurements were supervised by the
same investigator (K.C.Y.), and test-retest reliability was
performed on 24 subjects at PRE with an ICC of 0.999.

Venipuncture and Collection of Muscle Tissue After ultra-
sound and BIS measures, blood samples were extracted from the
antecubital vein using a 5 ml serum separator tube (BD Vacu-
tainer, Franklin Lakes, NJ). Blood samples were centrifuged at
3,500g for 5 minutes at room temperature, and serum was ali-
quoted into 1.7 ml polypropylene tubes and stored at 280° C

Figure 1. Study design. AR5 active recovery; PR5 passive recovery; DL5 deload; RT5 resistance training; BB5 barbell;
SLDL 5 stiff-legged deadlift. “*” denotes that all exercises were completed at a standard intensity of 60% of estimated 1
repetition maximum derived from the testing of 3 repetition maximums for each exercise.
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until processing. Skeletal muscle biopsy collections were obtained
from the right VL using a 5-gauge needle as described in Mobley
et al. (19). After biopsy collection, ;20–40 mg of tissue was
teased of connective tissue and blood then embedded in
cryomolds containing optimal cutting temperature (OCT) media
(Tissue-Tek; Sakura Finetek, Inc., Torrence, CA). Tissue was
embedded in a nonstretched manner for perpendicular slicing
before rapid freezing using liquid nitrogen-cooled isopentane
before beingwrapped in foil and stored at280° C. The remaining
portion of the sample was placed in prelabeled foils and flash
frozen by liquid nitrogen and stored at 280° C until processing.
Notably, all biopsies were collected by the same investigators
(M.D.R. and C.T.H.) and were spaced ;2 cm apart at
approximately the same depth at each testing session.

Immunohistochemistry for Fiber Cross-Sectional Area and
Myonuclear Quantity Methodology for immunohistochemistry
as it pertains to this investigation can be found inHaun et al. (10).
In brief, OCT-preserved sections of tissuewere cut at 8mmusing a
cryotome (Leica Biosystems, Buffalo Grove, IL) and adhered to
positively charged histology slides, and stored at280° C until all
samples were sectioned. Samples were air-dried at room
temperature for up to 10 minutes, followed by permeabilization
in a phosphate-buffered saline (PBS) solution containing 0.5%
Triton X-100 for 10 minutes. After permeabilization, samples
were blockedwith Pierce Super Blocker (Thermo Fisher Scientific,
Waltham,MA) for 10 minutes before being washed for 2minutes
in PBS. Samples were then incubated for 10 minutes with a
commercially available, prediluted rabbit antidystrophin IgG
antibody solution (catalog #: GTX15277; GeneTex, Inc., Irvine,
CA) and spiked in mouse antimyosin I IgG (catalog #: A4.951
supernatant; Hybridoma Bank, Iowa City, IA; 40 ml per 1 ml of
dystrophin antibody solution). Sections were washed for 2
minutes in PBS followed by a 15-minute incubation in the dark
with a secondary antibody solution consisting of Texas-Red
conjugated antirabbit IgG (catalog #: TI-1000; Vector
Laboratories, Burlingame, CA) and Alexa-Fluor 488-conjugated
antimouse IgG (catalog #: A-11001; Thermo Fisher Scientific;
;6.6ml of all secondary antibodies per 1ml of blocking solution).
Sections were then washed for 2 minutes in PBS and air-dried
followed by mounting with fluorescent media containing 4,6-
diamidino- 2-phenylindole (DAPI; catalog #: GTX16206;
GeneTex, Inc.). Sections were stored in the dark at 4° C until
immunofluorescent imaging was conducted.

Digital images were captured using a fluorescence microscope
(Nikon Instruments, Melville, NY) using a 103 objective. Ap-
proximate exposure times were 400 milliseconds for TRITC and
FITC imaging, and 80milliseconds forDAPI. This stainingmethod
allowed for the identification of cell membranes (detected by the
TRITC filter), type I fiber green cell bodies (detected by the FITC
filter), and myonuclei (detected by the DAPI filter). Quantification
of myonuclei, type I, and type II fibers and measurement of the
aforementioned fibers was completed with the open-source soft-
ware CellProfiler (5) using the protocol described in Haun et al.
(10), where the number of pixels within the border of each fiber
were counted and converted to a total area (in squared microme-
ters). In addition, the total number of myonuclei was quantified
using CellProfiler. Of importance, all sections were cut and imaged
by investigators blinded to the interventions (H.M.H. and C.D.F.).

Muscle Tissue Processing Muscle tissue foils were removed
from 280° C and crushed using a liquid nitrogen cooled mortar
and pestle. Approximately 30 mg of powdered muscle tissue was

placed in a 1.7 ml microcentrifuge tube along with 500 ml of ice-
cold general cell lysis buffer (20 mMTris-HCl [pH 7.5], 150 mM
NaCl, 1 mM Na2EDTA, 1 mM EGTA, and 1%Triton; Cell
Signaling, Danvers, MA, prestocked with protease and Tyr/Ser/
Thr phosphatase inhibitors). Micropestles were used to manually
homogenize tissue samples followed by centrifugation at 500g for
5 minutes to remove insoluble proteins. The sample lysates that
were obtainedwere stored at280° C beforeWestern blotting and
the 20S proteasome activity assay described below.

Western Blotting Muscle tissue lysate samples were batch pro-
cessed for total protein content using a BCA Protein Assay Kit
(Thermo Fisher Scientific). Lysates were then prepared forWestern
blotting with 43 Laemmli buffer at 1 mg/ml. After sample prepa-
ration, 15 ml of each sample were loaded onto a 4–15% SDS-
polyacrylamide gel (Bio-Rad Laboratories, Hercules, CA) followed
by electrophoresis (180 V for 60 minutes) using premade 13 SDS-
PAGE running buffer (Ameresco, Farmingdale, MA). Proteins
were transferred to polyvinylidene difluoride membranes (Bio-Rad
Laboratories), at 200 mA for 2 hours followed by Ponceau S
staining and imaging to ensure equal protein loading between
lanes. A blocking solution made of 5% nonfat milk powder and
Tris-buffered saline with 0.1% Tween-20 (TBST; Ameresco) was
applied to the membranes for a period of 1 hour at room
temperature. Rabbit antihuman phospho-mechanistic target of
rapamycin (mTOR) (Ser 2448) (1:1,000; catalog #: 2971; Cell
Signaling), rabbit antihuman pan mTOR (1:1,000; catalog #:
2972; Cell Signaling), rabbit antihuman phospho-AMPK⍺ (Thr
172) (1:1,000; catalog #: 2535; Cell Signaling), rabbit antihuman
pan AMPK⍺ (1:1,000; catalog #: 2532; Cell Signaling), rabbit
antihuman phospho-4E-BP1 (Thr 37/46) (1:1,000; catalog #:
2855; Cell Signaling), rabbit antihuman pan 4E-BP1 (1:1,000;
catalog #: 9644; Cell Signaling), rabbit antihuman phospho-p70
s6k (Thr 389) (1:1,000; catalog #: 9234; Cell Signaling), rabbit
antihuman pan p70 s6k (1:1,000; catalog #: 2708; Cell Signaling),
and rabbit antihuman ubiquitin (1:1,000; catalog #: 3933; Cell
Signaling) were incubated with membranes for 24 hours at 4° C in
TBST with 5% bovine serum albumin (BSA). After a 24-hour
incubation, samples underwent a 1-hour incubation in horseradish
peroxidase–conjugated antirabbit (1:2,000) (catalog #: 7074; Cell
Signaling) in TBST with 5% BSA at room temperature.
Membranes were developed using an enhanced chemiluminescent
reagent (Luminata Forte HRP substrate; EMDMillipore, Billerica,
MA), with band densitometry performedwith a gel documentation
system and associated densitometry software (UVP, Upland, CA).
Densitometry values for phosphorylatedWestern blot targets were
normalized to their respective pan densitometry values similar to
the methods reported by Roberson et al. (27).

Real-Time Polymerase Chain Reaction RNA was reverse
transcribed into cDNA for quantitative polymerase chain re-
action (qPCR) analysis using 2 mg of RNA with cDNA synthesis
reagents (Quanta Biosciences, Gaithersburg, MD) in accordance
with the manufacturer’s recommendations. Quantitative PCR
was performed using SYBR green chemistry (Quanta Biosciences)
and gene-specific primers which can be found in Table 2.
Calculations for qPCRwere performed as previously described in
Romero et al. (28).

Serum Assays for Creatine Kinase Activity, Testosterone,
and Cortisol Serum creatine kinase (CK) levels were determined
using a commercially available activity assay (Bioo Scientific,
Austin, TX). Values were not analyzed if the sample was missing
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or if the standard curve indicated that serum levels were negative.
Commercially available ELISA kits (ALPCO Diagnostics, Salem,
NH) were used to measure serum testosterone and cortisol. All
kits were performed in accordance with manufacturer’s specifi-
cations, and plates were read using a 96-well spectrophotometer
(BioTek, Winooski, VT). The mean coefficient of variation (CV)
of duplicate values for each assay was 1.4% for CK, 6.9% for
testosterone, and 2.8% for cortisol.

20S Proteasome Activity Assay Muscle lysates (described
above) were batch processed for 20S proteasome activity using
commercially available fluorometric kits (catalog #: APT280;
Millipore Sigma, Burlington, MA) in accordance with the manu-
facturer’s instructions. Values from the assay are expressed as rel-
ative fluorometric units. ThemeanCV for all duplicates was 8.7%.

Statistical Analysis

Statistical analyses were performed in SPSS (version 24; IBMSPSS
Statistics Software, Chicago, IL) and Google Sheets. Before
analysis, assumptions testing was performed for all dependent
variables consisting of (a) Shapiro-Wilk’s tests for normality, (b)
Mauchly’s test for sphericity, and (c) Levene’s test of homogeneity
of variance. A Greenhouse-Geisser correction was applied if the
assumption of homogeneity of variance and/or sphericity was
violated. Gross and molecular markers of skeletal muscle hyper-
trophy, variables related to RT performance, and biochemical
assays were analyzed using repeated measures analysis of co-
variance where a mean-centered covariate for PRE measures was
created and implemented within the model. Western blot and
qPCR data were analyzed using repeated measures analysis of
variance. LSD post-hoc tests were used to assess differences in
dependent variables for group or time. Statistical significance was
set at p # 0.05. Data are presented throughout as mean 6 SD.

Results

Training and Deload Volume Load

Training volume (Figure 2) exhibited a significant effect of time (p
, 0.001; h2

p 5 0.975). Combined training volume for weeks 1–6
were higher than DL training volume (p , 0.001; confidence
interval [CI]wks1-6 5 329,114.53–374,995.58; CIDL 5
5,538.36–7,356.84). There was no group 3 time interaction or
main effect of group observed. Independent samples t-tests were
run on combined training volume for weeks 1–6 and DL training

volume to demonstrate similarities in intervention training vol-
ume and to show differences in DL training volume. There were
no differences observed in combined (weeks 1–6) training volume
(p 5 0.423); however, as expected, training volume at DL was
different between AR and PR conditions (p , 0.001).

Total Mood Disturbance, Barbell Velocity, and Soreness

Barbell velocity (Figure 3A) did not exhibit a group 3 time in-
teraction (p5 0.761; h2

p 5 0.011). In addition, there was nomain
effect of group (p 5 0.652; h2

p 5 0.013; CIAR 5 0.66–0.76; CIPR
5 0.64–0.75) or time (p 5 0.075; h2

p 5 0.166; CIPRE 5
0.74–0.74; CIPOST5 0.65–0.75, CIDL5 0.61–0.74). Total mood
disturbance (Figure 3B) did not exhibit a group3 time interaction
(p5 0.294; h2

p 5 0.052) or main effect of group (p5 0.592; h2
p 5

0.013; CIAR 5 85.98–91.37; CIPR 5 84.72–90.54). TMD did,
however, exhibit a main effect of time (p 5 0.006; h2

p 5 0.200;
CIPRE 5 87.73–87.73; CIPOST 5 87.54–95.80; CIDL 5
81.71–88.41) where POST TMD was greater than DL (p 5
0.007). No differences were observed between PRE and POST
TMD. Pressure to pain threshold (Figure 3C) did not exhibit a
group3 time interaction (p5 0.542; h2

p 5 0.021) or main effect
of group (p 5 0.363; h2

p 5 0.033; CIAR 5 58.95–67.41; CIPR 5
51.53–70.68). There was, however, a main effect of time ob-
served for PPT (p , 0.001; h2

p 5 0.307; CIPRE 5 70.19–70.19;
CIPOST 5 87.54–95.80; CIDL 5 81.71–88.41) where PPT was
lower at POST than at PRE (p , 0.001) and DL (p 5 0.016).

Body Composition and Vastus Lateralis Thickness

Body composition and VL muscle thickness values are presented in
Table 3. Total body mass did not exhibit a group3 time interaction
(p 5 0.855; h2

p 5 0.003) or main effect of group (p 5 0.788; h2
p 5

0.003; CIAR5 82.75–84.33; CIPR5 82.87–84.51). Total bodymass
did exhibit a main effect of time (p 5 0.002; h2

p 5 0.258; CIPRE 5
82.776–82.776; CIPOST 5 83.50–85.15; CIDL 5 82.82–84.67)
where total body mass at POST was greater than PRE (p , 0.001)
and DL (p5 0.041). Bioelectrical impedance spectroscopy measured
fat-free mass did not exhibit a group3 time interaction (p5 0.491;
h2
p 5 0.024) ormain effect of group (p5 0.916;h2

p , 0.001; CIAR5
68.29–70.09; CIPR 5 68.33–70.19). There was, however, a main
effect of time observed for BIS fat-free mass (p, 0.001; h2

p 5 0.383;
CIPRE5 67.95–67.95;CIPOST569.50–71.42;CIDL5 68.20–70.36)
where fat-freemass at POSTwas greater than at PRE (p,0.001) and
DL (p50.018). Furthermore, BISmeasured fatmassdidnot exhibit a

Table 2

Quantitative polymerase chain reaction primer sequences.*

Forward primer (59 → 39) Reverse primer (59 → 39)

Gene

MGF 59-CGAAGTCTCAGAGAAGGAAAGG-39 59-ACAGGTAACTCGTGCAGAGC-39

MSTN 59-GACCAGGAGAAGATGGGCTGAATCCGTT-39 59-CTCATCACAGTCAAGACCAAAATCCCTT-39

Atrogin-1 59-ATGTGCGTGTATCGGATGG-39 59-AAGGCAGGTCAGTGAAGC-39

MuRF-1 59-GCCTTCTTCGCCTTCTCC-39 59-AGCTCATACAGACTCAGTTCC-39

MHC I 59-GTATGAGGAGTCGCAGTCGG-39 59-AGGGACTCCTCATAGGCGTT-39

MHC IIa 59-GAACACCCAAGGCATCCTCA-3 59-GCTGTTCCTTCAGGTCCTCC-39

MHC IIx 59-CTGGTGGACAAACTGCAAGC-39 59-CCTGCGGAATTTGGAGAGGT-39

Housekeeping genes

B2M 59- ATGAGTATGCCTGCCGTGTGA-39 59-GGCATCTTCAAACCTCCATG-39

PPIA 59-CGATGTCTCAGAGCACGAAA-39 59-CCCACCTGTTTCTTCGACAT-39

*MGF5mechano growth factor; MSTN5myostatin; MuRF-15muscle ring finger-1; MHC-I5myosin heavy chain-1; MHC-IIa5myosin heavy chain-IIa; MHC-IIx5myosin heavy chain-IIx; B2M5 beta-2-

microglobulin; PPIA 5 cyclophilin.
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group3 time interaction (p5 0.174; h2
p 5 0.065) or main effect of

group (p 5 0.906; h2
p 5 0.001; CIAR 5 13.84–14.89; CIPR 5

13.86–14.96). A main effect of time observed for BIS fat mass (p 5
0.005; h2

p 5 0.187; CIPRE 5 14.83–14.83; CIPOST 5 13.22–14.51;
CIDL 5 13.87–15.06) where fat mass at PRE and DL were greater
than at POST (p5 0.005 and p5 0.019, respectively).

Vastus lateralis thickness measured by ultrasound did not ex-
hibit a group 3 time interaction (p 5 0.769; h2

p 5 0.010). In
addition, there was no effect of group (p 5 0.691; h2

p 5 0.006;
CIAR 5 2.94–3.14; CIPR 5 2.96–3.18) or time (p 5 0.064; h2

p 5
0.100; CIPRE 5 2.98–3.11; CIPOST 5 3.01–3.20; CIDL 5
2.91–3.12).

There was no group3 time interaction observed (p5 0.440; h2
p

5 0.030) for TBW. In addition, there was no main effect of group
(p 5 0.988; h2

p , 0.001; CIAR 5 48.12–49.24; CIPR 5

48.08–49.29). Total bodywater did, however, exhibit amain effect
of time (p , 0.001; h2

p 5 0.376; CIPRE 5 47.88–47.88; CIPOST 5
48.79–50.03; CIDL 5 48.07–49.42) where TBW at POST was
greater than PRE (p , 0.001) and DL (p 5 0.002). In addition,
TBW at DL was greater than at PRE (p 5 0.014). Intracellular
water (ICW) did not exhibit a group3 time interaction (p5 0.474;
h2
p 5 0.027) or main effect of group (p5 0.865; h2

p 5 0.002; CIAR
5 29.35–30.10; CIPR 5 29.36–30.17). There was a main effect of
time observed for ICW (p , 0.001; h2

p 5 0.317; CIPRE 5
29.23–29.23; CIPOST5 29.62–30.55; CIDL5 29.52–30.33)where
ICW at PRE was lower than at POST (p , 0.001) and DL (p 5
0.002). Extracellular water (ECW) did not exhibit a group3 time
interaction (p 5 0.737; h2

p 5 0.027) or main effect of group (p 5
0.865; h2

p 5 0.002; CIAR 5 18.67–19.25; CIPR 5 29.36–30.17).
There was, however, a main effect of time observed for ECW (p,
0.001; h2

p 5 0.277; CIPRE5 18.65–18.65; CIPOST5 29.62–30.55;
CIDL 5 29.52–30.33) where ECW at POST was greater than at
PRE (p , 0.001) and DL (p 5 0.001).

Testosterone and Cortisol

Serum testosterone (Figure 4A) did not exhibit a group 3 time
interaction (p 5 0.359; h2

p 5 0.044), main effect of group (p 5
0.178; h2

p 5 0.078; CIAR 5 14.75–16.92; CIPR 5 13.56–15.91),
or main effect of time (p 5 0.436; h2

p 5 0.035; CIPRE 5
15.52–15.52; CIPOST 5 13.61–15.98; CIDL 5 14.05–17.02). In
addition, serum cortisol (Figure 4B) did not exhibit a group 3
time interaction (p5 0.530; h2

p 5 0.027), main effect of group (p
5 0.843; h2

p 5 0.002; CIAR 5 331.62–400.29; CIPR 5
333.77–407.95), or main effect of time (p 5 0.943; h2

p 5 0.003;
CIPRE 5 371.01–371.01; CIPOST 5 319.55–409.76; CIDL 5
330.74–408.33). Finally, serum testosterone to cortisol ratio (T:C
ratio; Figure 4C) did not exhibit a group3 time interaction (p5
0.245; h2

p 5 0.060), main effect of group (p5 0.403; h2
p 5 0.031;

CIAR5 0.04–0.05; CIPR5 0.04–0.05), ormain effect of time (p5
0.910; h2

p 5 0.004; CIPRE 5 0.04–0.04; CIPOST 5 0.04–0.05;
CIDL 5 0.04–0.05).

Fiber Cross Sectional Area and Myonuclear Quantity

Mean fCSA (Figure 5A) did not exhibit a group3 time interaction
(p 5 0.853; h2

p 5 0.006), main effect of group (p 5 0.846; h2
p 5

0.001; CIAR 5 3,895.98–4,287.27; CIPR 5 2,862.07–4,267.24),
or main effect of time (p 5 0.376; h2

p 5 0.037; CIPRE 5
4,035.09–4,035.09; CIPOST 5 3,931.66–4,451.79; CIDL 5
3,730.39–4,284.83). Type I mean fCSA (Figure 5B) did not

Figure 2. Training and deload volume load. AR 5 active re-
covery; PR 5 passive recovery. Data are presented as mean
6 SD for total combined volume load for weeks 1–6 and DL
(week 7) volume load.

Figure 3. Barbell velocity, total mood disturbance, and soreness. AR 5 active recovery; PR 5 passive recovery. Data are
presented as mean 6 SD for barbell velocity (panel A), total mood disturbance (panel B), and soreness (panel C).
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exhibit a group3 time interaction (p5 0.869; h2
p 5 0.005), main

effect of group (p 5 0.647; h2
p 5 0.008; CIAR 5

3,571.54–3,983.52; CIPR 5 3,631.35–4,057.86), or main effect
of time (p 5 0.731; h2

p 5 0.012; CIPRE 5 3,819.69–3,819.69;
CIPOST 5 3,567.40–4,160.53; CIDL 5 3,490.17–4,008.93). Type
II mean fCSA (Figure 5C) did not exhibit a group 3 time in-
teraction (p5 0.605;h2

p 5 0.019), main effect of group (p5 0.787;
h2
p 5 0.003; CIAR 5 3,930.77–4,427.04; CIPR 5

3,874.51–4,388.30), ormain effect of time (p50.163,h2
p 50.067;

CIPRE 5 4,076.04–4,076.01; CIPOST 5 4,019.99–4,604.48; CIDL

5 3,769.28–4,385.15). The mean myonuclei per muscle fiber
(Figure 5D) did not exhibit a group3 time interaction (p5 0.192;
h2
p 5 0.061) ormain effect of time (p5 0.747;h2

p 5 0.011; CIPRE5
2.57–2.57; CIPOST 5 2.42–2.96; CIDL 5 2.30–2.99). The mean
myonuclei per muscle fiber did, however, have a main effect of
group (p 5 0.037; h2

p 5 0.157; CIAR 5 2.59–3.02; CIPR 5
2.25–2.69) where the AR group had more myonuclei per muscle
fiber than the PR group (p 5 0.037).

Markers of Skeletal Muscle Proteolysis

A significant group 3 time interaction was observed for 20S
proteasome activity (p 5 0.049; h2

p 5 0.122; Figure 6A); how-
ever, post-hoc tests revealed no statistically significant differences
between conditions at PRE (p 5 0.833), POST (p 5 0.298), and
DL (p 5 0.078). 20S proteasome activity did not exhibit a main
effect of group (p 5 0.540; h2

p 5 0.015; CIAR 5 68.05–79.08;
CIPR 5 65.46–76.88) or time (p 5 0.889; h2

p 5 0.005; CIPRE 5
70.98–70.98; CIPOST5 65.46–81.09; CIDL5 63.23–82.47). Fold
change for muscle polyubiquitinated proteins (Figure 6B) did not
exhibit a group3 time interaction (p5 0.631; h2

p 5 0.013), main
effect of group (p 5 0.633; h2

p 5 0.009; CIAR 5 0.91–1.18; CIPR
5 0.83–1.12), or main effect of time (p 5 0.212; h2

p 5 0.059;
CIPRE 5 1.00–1.00; CIPOST 5 0.81–1.07; CIDL 5 0.90–1.28).
Atrogin-1 mRNA expression (Figure 6D) did not exhibit a group
3 time interaction (p 5 0.971; h2

p 5 0.001) or main effect
of group (p 5 0.838; h2

p 5 0.002; CIAR 5 2.10–5.29;

Table 3

Body composition.*

Variable
PRE POST DL p

Mean 6 SD Mean 6 SD Mean 6 SD Time Group Group 3 time

Total mass (kg)

AR (n 5 15) 81.80 6 10.77 83.24 6 10.75 82.72 6 10.06 0.002† 0.788 0.855

PR (n 5 14) 83.82 6 12.82 85.48 6 12.53 84.84 6 13.03

BIS-measured FFM (kg)

AR (n 5 15) 67.56 6 8.61 70.28 6 8.74 68.62 6 7.16 ,0.001† 0.916 0.491

PR (n 5 14) 68.36 6 10.93 70.67 6 11.13 69.96 6 11.49

BIS-measured FM (kg)

AR (n 5 15) 14.24 6 3.99 12.96 6 4.43 14.10 6 4.57 0.005‡ 0.906 0.174

PR (n 5 14) 15.46 6 5.61 14.81 6 5.90 14.87 6 5.75

VL thickness (cm)

AR (n 5 15) 2.97 6 0.54 3.02 6 0.41 2.96 6 0.45 0.064 0.691 0.769

PR (n 5 14) 3.13 6 0.52 3.19 6 0.46 3.06 6 0.37

Total body water (L)

AR (n 5 15) 47.66 6 5.45 49.37 6 5.40 48.36 6 4.44 ,0.001‡ 0.988 0.440

PR (n 5 13) 48.13 6 6.98 49.50 6 7.31 49.16 6 7.43

Intracellular water (L)

AR (n 5 15) 29.28 6 3.36 30.21 6 3.15 29.83 6 2.68 ,0.001‡ 0.865 0.474

PR (n 5 13) 29.17 6 4.03 29.95 6 4.46 30.02 6 4.32

Extracellular water (L)

AR (n 5 15) 18.38 6 2.23 19.16 6 2.52 18.53 6 2.00 ,0.001‡ 0.830 0.737

PR (n 5 13) 18.97 6 3.10 19.54 6 3.05 19.14 6 3.33

*FFM 5 fat-free mass; FM 5 fat mass; AR 5 active recovery; PR 5 passive recovery; BIS 5 bioelectrical impedance spectroscopy; VL 5 vastus lateralis.

†Measurement was higher at POST and DL (p , 0.05).

‡Measurement was higher at POST (p , 0.05).

Figure 4. Testosterone and cortisol. AR5 active recovery; PR5 passive recovery; T:C ratio5 testosterone to cortisol ratio.
Data are presented as mean 6 SD for testosterone (panel A), cortisol (panel A), and T:C ratio (panel C).
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Figure 5. Fiber cross sectional area and myonuclear quantity. AR 5 active recovery; PR 5 passive recovery; fCSA 5 fiber
cross-sectional area. Data are presented as mean6 SD for mean fCSA (panel A), type I fCSA (panel B), type II fCSA (panel C),
and mean myonuclei per fiber (panel D). Panel E is a representative histology image for n5 1 subject at PRE, POST, and DL.

Figure 6.Markers of skeletal muscle proteolysis. AR5 active recovery; PR5 passive recovery. Data are presented as mean
6 SD for 20S proteasome activity (panel A), pan-polyubiquitin (panel B), atrogin-1 mRNA (panel D), MuRF-1 mRNA (panel E),
and serum creatine kinase (panel F). Panel C is a representative Western blot (n 5 1) of pan-polyubiquitin. “ns” indicates an
interaction effect for the 20S proteasome at DL where AR values trended higher than PR values (p 5 0.078).
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CIPR 5 2.71–6.01). Atrogin-1 mRNA expression did, however,
exhibit a main effect of time (p , 0.001; h2

p 5 0.791; CIPRE 5
1.00–1.00; CIPOST 5 2.98–5.29; CIDL 5 4.49–9.41), where
atrogin-1 mRNA expression was greater at DL than at PRE and
POST (p, 0.001). In addition, atrogin-1mRNA expressionwas
greater at POST than at PRE (p , 0.001). MuRF-1 mRNA ex-
pression (Figure 6E) did not exhibit a group 3 time interaction
(p5 0.567;h2

p 5 0.015) ormain effect of group (p5 0.463;h2
p 5

0.020; CIAR 5 4.01–6.84; CIPR 5 3.22–6.15). MuRF-1 mRNA
expression did, however, exhibit a main effect of time (p ,
0.001; h2

p 5 0.598; CIPRE 5 1.00–1.00; CIPOST 5 4.46–6.37;
CIDL5 6.44–11.06) whereMuRF-1 mRNA expression was greater
at DL than at PRE and POST (p , 0.001). In addition, MuRF-1
mRNA expression was greater at POST than at PRE (p , 0.001).
Serum CK (Figure 6F) did not exhibit a group 3 time interaction
(p5 0.543; h2

p 5 0.022) or main effect of group (p5 0.922; h2
p ,

0.001; CIAR5 114.25–239.36; CIPR5 103.48–240.79). Therewas,
however, a main effect of time (p 5 0.010; h2

p 5 0.197; CIPRE 5
180.12–180.12; CIPOST5 132.549–353.85; CIDL5 54.10–146.12)
for serumCKwhere this measure was lower at DL than at PRE (p5
0.002) and POST (p 5 0.011).

mRNA Markers of Skeletal Muscle Anabolism

Myosin heavy chain (MHC) I mRNA expression (Figure 7A) did
not exhibit a group3 time interaction (p5 0.136; h2

p 5 0.071) or
main effect of group (p5 0.106; h2

p 5 0.094; CIAR5 6.84–11.79;
CIPR 5 3.86–8.97). However, a main effect of time was observed
for MHC-I mRNA expression (p , 0.001; h2

p 5 0.586; CIPRE 5
1.00–1.00; CIPOST 5 8.87–15.27; CIDL 5 7.81–13.20) where

MHC-I mRNA expression at PRE was lower than at POST and
DL (p, 0.001). Therewas a group3 time interaction (p5 0.002;
h2
p 5 0.213) for MHC-IIa mRNA expression (Figure 7B). Post-

hoc analysis revealedMHC-IIa mRNA expression to be higher in
AR than PR at POST (p 5 0.034) and at DL (p 5 0.001). In
addition, therewas amain effect of group (p5 0.003;h2

p 5 0.294;
CIAR 5 6.80–12.50; CIPR 5 2.51–8.42) where AR had a higher
expression of MHC-IIa mRNA than PR (p 5 0.003). Further-
more, there was a main effect of time for MHC-IIa mRNA ex-
pression (p , 0.001; h2

p 5 0.908; CIPRE 5 1.00–1.00; CIPOST 5
7.39–13.66; CIDL 5 7.92–14.38) where mRNA expression of
MHC-IIa was greater at POST and DL than at PRE (p, 0.001).
Myosin heavy chain IIx mRNA expression (Figure 7C) did not
exhibit a group 3 time interaction (p 5 0.280; h2

p 5 0.046) or
main effect of group (p5 0.690; h2

p 5 0.006; CIAR 5 0.40–1.12;
CIPR5 0.55–1.29).Myosin heavy chain IIx did, however, exhibit
a main effect of time (p, 0.001; h2

p 5 0.611; CIPRE5 1.00–1.00;
CIPOST 5 0.12–0.51; CIDL 5 0.55–1.87) where expression was
greater at PRE than at POST (p, 0.001) and DL (p5 0.013). In
addition, MHC-IIx mRNA expression was found to be greater at
DL than at POST (p , 0.001). Mechano growth factor (MGF)
mRNA expression (Figure 7D) did not exhibit a group 3 time
interaction (p5 0.590; h2

p 5 0.021) or main effect of group (p5
0.926; h2

p , 0.001; CIAR 5 0.76–2.03; CIPR 5 1.01–2.32).
Mechano growth factor mRNA expression did, however, exhibit
a main effect of time (p5 0.033; h2

p 5 0.128; CIPRE5 1.00–1.00;
CIPOST 5 1.28–2.92; CIDL 5 0.85–2.14) where MGF mRNA
expression was greater at POST than at PRE (p5 0.028) and DL
(p 5 0.040). Finally, myostatin (MSTN) mRNA expression
(Figure 7E) did not exhibit a group3 time interaction (p5 0.920;

Figure 7.mRNAmarkers of skeletal muscle anabolism. AR5 active recovery; PR5 passive recovery; MHC5myosin heavy
chain; MGF5mechano growth factor; MSTN5myostatin. Data are presented as mean6 SD for MHC I (panel A), MHC IIa
(panel B), MHC IIx (panel C),MGF (panel D), andMSTN (panel E). “*” indicatesMHC-IIa fold changewas higher in the AR group
at POST than PRE (p 5 0.034); “**” indicates MHC-IIa fold change was higher in the AR group at DL than PRE (p 5 0.001).
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h2
p 5 0.003) ormain effect of group (p5 0.746; h2

p 5 0.004; CIAR
5 0.83–1.99; CIPR 5 1.09–2.29). Myostatin mRNA expression
did exhibit a main effect of time (p, 0.001; h2

p 5 0.405; CIPRE5
1.00–1.00; CIPOST 5 0.79–1.95; CIDL 5 1.55–3.00) where
MSTN mRNA expression was greater at DL than at PRE and
POST (p , 0.001).

Protein Markers of Mechanistic Target of Rapamycin
Complex 1 Activity

Mechanistic target of rapamycin (Figure 8A) did not exhibit a
group3 time interaction (p5 0.657; h2

p 5 0.015) or a main effect
of group (p 5 0.724; h2

p 5 0.005; CIAR 5 0.80–1.02; CIPR 5
0.77–0.99).Mechanistic target of rapamycin did, however, exhibit

Figure 8. Protein markers of mTORC1 activity. AR5 active recovery; PR5 passive recovery. Data are presented as mean6
SD for mTOR (panel A), 4E-BP1 (panel C), p70S6k (panel E), and AMPKa (panel G). Panels B, D, F, and H are representative
images for mTOR, 4E-BP1, p70S6k, and AMPKa, respectively.
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a main effect of time (p5 0.010; h2
p 5 0.156; CIPRE 5 1.00–1.00;

CIPOST5 0.75–0.97; CIDL5 0.68–0.97)where valueswere greater
at PRE than at POST (p 5 0.017) and DL (p 5 0.017). 4EBP1
(Figure 8C) did not exhibit a group3 time interaction (p5 0.655;
h2
p 5 0.013), main effect of group (p5 0.993; h2

p , 0.001; CIAR5
0.71–1.06; CIPR 5 0.71–1.06), or main effect of time (p 5 0.117;
h2
p 5 0.008; CIPRE 5 1.00–1.00; CIPOST 5 0.66–0.98; CIDL 5

0.60–1.07). p70S6K (Figure 8E) did not exhibit a group 3 time
interaction (p 5 0.739; h2

p 5 0.008), main effect of group (p 5
0.691;h2

p 5 0.006; CIAR5 0.93–1.39; CIPR5 0.85–1.33), ormain
effect of time (p5 0.139; h2

p 5 0.074; CIPRE 5 1.00–1.00; CIPOST

5 0.97–1.49; CIDL 5 0.88–1.40). AMPK (Figure 8G) did not ex-
hibit a group 3 time interaction (p 5 0.650; h2

p 5 0.008), main
effect of group (p5 0.424; h2

p 5 0.025; CIAR5 1.16–1.61; CIPR5
0.85–1.31), ormain effect of time (p5 0.849;h2

p 5 0.002; CIPRE5
1.00–1.00; CIPOST 5 0.92–1.69; CIDL 5 0.81–1.95).

Discussion

This study is one of the first to investigate some of the underlying
physiological adaptations that result from different deloading para-
digms after high-volume RT. Novel findings include the interactions
observed for 20S proteasome activity and MHC IIa mRNA expres-
sion,whicharediscussed inmoredetail below.However, amajorityof
our data suggest 1week of active vs. passive recovery results in similar
effects on self-reported mood state, barbell squat velocity, body
composition, andmolecular as well as histological variables related to
skeletal muscle hypertrophy. Notably, the lack of meaningful obser-
vations for BB velocity should be interpreted with caution as previous
research has shown variability in the reliability of this measure (6,32).

Although it is well known that atrogin-1 mRNA, MuRF-1
mRNA, and the 20S and 26S proteasomes are associated with
muscle atrophy, these markers have also been implicated in the
remodeling processes associated with skeletal muscle hypertrophy
(1,22). After 6 weeks of RT and 1 week of deloading, atrogin-1
mRNA andMuRF-1 mRNAwere elevated in both groups, whereas
20S proteasome activity remained high in the AR group but de-
creased in the PR group at DL. Stefanetti and colleagues observed an
increase in atrogin-1 mRNA, but not MuRF-1 mRNA, in human
subjects after a 10-week progressively overloaded RT intervention
(31). In addition, Léger et al. (14) found atrogin-1 mRNA,MuRF-1
mRNA, and 20S proteasome activity to be elevated after 8 weeks of
RT, and levels decreased tobaseline levels after a cessationof training
for 8 weeks. This study adds to the current body of literature given
that no other human study has examined changes in these markers
with RT followed by 1 week of deloading. Furthermore, we report
that localizedVLhypertrophydid not seem tooccur andwhole-body
hypertrophy was similar between groups; therefore, making it dif-
ficult to interpret the relevance of differences in 20S proteasome data
between DL paradigms.

As with proteolysis measures, currently available literature on the
mRNAexpression of the variousMHC isoforms in relation to chronic
RT interventions is lacking. Assuming alterations in MHC mRNAs
lead to changes inMHCprotein levels, themain effects observedherein
suggest that high volume training promotes more of an oxidative
phenotype (i.e., increases in MHC I and IIa protein) while decreasing
the expression of MHC-IIx. Interestingly, increases in MGF and
MSTNmRNA coincidedwith training, and this is likely a reflection of
the increased remodeling thatoccurredduring thehigh-volume training
intervention. However, the implications of these data are limited given
that (a) only main effects of time were observed for most observed
variables and (b) localized VL muscle growth did not seem to occur.

Aside from these molecular differences, the most profound
findings herein are the lack of differences between active vs.
passive deload. Changes in self-reported mood disturbance and
localized pain (assessed objectively with an algometer) were
similar after both forms of deload. Notably, whole-body fat-free
mass increased in both groups despite no changes being observed
inVL thickness and fCSAor barbell squat velocity in either group.
Anabolic signaling has been shown to increase as a result of an
acute low- intensity and high-intensity training bout in untrained
and previously trained males (4,9). In addition, skeletal muscle
growth has been shown to result from chronic low-volume and
high-volume RT (13,18); however, the instrument used to mea-
sure this adaptation may be of critical importance. Of interest,
Haun and colleagues (11) published a review discussing mea-
surements commonly used for skeletal muscle hypertrophy
reporting low measurement agreement between dual-energy x-
ray absorptiometry, ultrasound-based measures, and histological
interrogation such as fCSA analysis. Recent commentaries have
posited that active deloading may be better than passive deload-
ing for maintaining skeletal muscle hypertrophy and strength;
however, the data are mixed (17,25). Although this may hold true
for long deload periods (e.g., greater than 1 week), our data as
well as other recent studies on tapering and cessation of training
suggest that a week of inactivity does not tend to lead to losses in
skeletal muscle size or performance. Thus, future studies are
needed to examine how much time of inactivity is needed to ob-
serve decrements in these variables and how specific forms and
doses of AR may exert different effects.

Biopsy and blood samples taken at POST and DL were sam-
pled with all subjects having finished POST training 24 hours
before sampling, and the AR group finishing the deload training
24 hours before DL sampling. The time at which samples were
obtained have the possibility of impacting some of the biomarkers
that were interrogated, which is unfortunately an unresolved lo-
gistical limitation. In addition, the authors note a lack of dis-
crimination between type IIa and IIx fibers histologically to be a
limitation. Finally, the authors also recognize that a lack of
postintervention and postrecovery strength testing is a limitation
particularly regarding deloading or tapering protocols.

Practical Applications

These data suggest that molecular markers related to skeletal
muscle hypertrophy are similar after a short period of active
vs. passive recovery (i.e., 1 week). Although gross measure-
ments of skeletal muscle hypertrophy did not differ between
groups, interesting molecular findings suggest that differing
recovery paradigms may affect the overall physiology of
skeletal muscle in the long term. Importantly, these data are
limited, and more research is needed on short-term and long-
term deloading paradigms to distinguish their differential ef-
fects on skeletal muscle physiology.
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