
Lindenwood University Lindenwood University 

Digital Commons@Lindenwood University Digital Commons@Lindenwood University 

Faculty Scholarship Research and Scholarship 

10-15-2013 

The Kalman filter for linear systems on time scales The Kalman filter for linear systems on time scales 

Martin Bohner 
Missouri University of Science and Technology 

Nick Wintz 
Lindenwood University, nwintz@lindenwood.edu 

Follow this and additional works at: https://digitalcommons.lindenwood.edu/faculty-research-papers 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Bohner, Martin and Wintz, Nick, "The Kalman filter for linear systems on time scales" (2013). Faculty 
Scholarship. 19. 
https://digitalcommons.lindenwood.edu/faculty-research-papers/19 

This Article is brought to you for free and open access by the Research and Scholarship at Digital 
Commons@Lindenwood University. It has been accepted for inclusion in Faculty Scholarship by an authorized 
administrator of Digital Commons@Lindenwood University. For more information, please contact 
phuffman@lindenwood.edu. 

https://digitalcommons.lindenwood.edu/
https://digitalcommons.lindenwood.edu/faculty-research-papers
https://digitalcommons.lindenwood.edu/rs
https://digitalcommons.lindenwood.edu/faculty-research-papers?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lindenwood.edu/faculty-research-papers/19?utm_source=digitalcommons.lindenwood.edu%2Ffaculty-research-papers%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phuffman@lindenwood.edu


J. Math. Anal. Appl. 406 (2013) 419–436

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

The Kalman filter for linear systems on time scales
Martin Bohner a, Nick Wintz b,∗

a Missouri University of Science and Technology, Department of Mathematics and Statistics, 1870 Miner Circle, Rolla, MO 65409-0020,
United States
b Lindenwood University, Department of Mathematics, 209 S. Kingshighway, St. Charles, MO 63301, United States

a r t i c l e i n f o

Article history:
Received 9 September 2012
Available online 9 May 2013
Submitted by Hans Zwart

Keywords:
Kalman filter
Time scale
Dynamic equation
Optimal estimation
Mean square error
Riccati equation

a b s t r a c t

We introduce the Kalman filter for linear systems on time scales, which includes the
discrete and continuous versions as special cases. When the system is also stochastic, we
show that the Kalman filter is an observer that estimates the system when the state is
corrupted by noisy measurements. Finally, we show that the duality of the Kalman filter
and the Linear Quadratic Regulator (LQR) is preserved in their unification on time scales. A
numerical example is provided.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In our previous work [5–7], we considered a linear dynamic system where the given state was incomplete or had not
been accuratelymeasured.We then introduced amore desirable statewhich theoretically containedmore information of our
process. Taking the difference between these known states gave us a new state equation influenced by a known disturbance.
The goal then was to determine an optimal control that not only minimized a cost functional, but this state difference (the
error) as well. Such problems are referred to as disturbance/rejection models (see [12,16,6]). Now we consider a natural
extension, where this disturbance is unknown.

In this paper, we consider the linear stochastic system

x∆(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0,
y(t) = Cx(t) + v(t),

where x ∈ Rn represents the state, u ∈ Rm is a known input, y ∈ Rp represents the measurement, w ∈ Rl is the process
noise, and v ∈ Rp is the measurement noise. In such a case, it is necessary to determine a filter that not only removes the
noise but retains relevant information. Here we seek an estimate that can not only accurately estimate our unknown true
state, but also ensures that the mean square error is as small as possible. This leads to finding an estimate x̂ such that x̂
satisfies the observer equation

x̂∆(t) = Ax̂(t) + Bu(t) + K(t)[y(t) − Cx̂(t)], x̂(t0) = x(t0),

where x is the expected value of our true state and K represents the Kalman gain.
The Kalman filter in the discrete case is usually attributed to Kalman in 1960 (see [13]), however this is subject to debate

(see [18,20,21]). In this setting, the Kalman filter is essentially a predictor–corrector type estimator. Initially, there is a ‘‘time
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Table 1
The ‘‘predictive’’ form of the discrete Kalman filter.

System: x(t + 1) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0
Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0,Q δ(t − s)), v ∼ (0, Rδ(t − s)), which are mutually uncorrelated, R > 0

Initialization
Initial estimate: x̂(t0) = x0
Error covariance: P(t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:
x̂(t + 1|t) = Ax̂(t|t − 1) + Bu(t) + K(t)[y(t) − Cx̂(t|t − 1)]

Kalman gain: K(t) = AP(t)CT (R + CP(t)CT )−1

Error covariance update:
P(t + 1) = AP(t)AT

− AP(t)CT (R + CP(t)CT )−1CP(t)AT
+ GQGT

Table 2
The continuous Kalman–Bucy filter.

System: ẋ(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0
Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0,Q δ(t − s)), v ∼ (0, Rδ(t − s)), which are mutually uncorrelated, R > 0

Initialization
Initial estimate: x̂(t0) = x0
Error covariance: P(t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:
˙̂x(t) = Ax̂(t) + Bu(t) + K(t)[y(t) − Cx̂(t)]

Kalman gain: K(t) = P(t)CTR−1

Error covariance update:
Ṗ(t) = AP(t) + P(t)AT

− P(t)CTR−1CP(t) + GQGT

update’’ inwhich the algorithmpredicts a state estimate based on apreviousmeasurement. This prediction is then associated
with an error covariance. Next there is a ‘‘measurement update’’ in which the algorithm calculates a correction of the state
estimate based on the prediction and the new measurement along with its associated error covariance. The algorithm then
repeats itself. While the discrete Kalman filter is usually written with separate time and measurement updates, this is not
necessary to do so. In Table 1 we present the discrete case in the ‘‘predictive’’ form. Note that the error covariance is not in
terms of either the measurement or the input (see [8,15]). As a result, it is possible that both the error covariance and the
Kalman gain can be computed a priori.

In 1961, Kalman and Bucy created a corresponding filter in the continuous case [14]. It should be noted that the
continuous (Kalman–Bucy) filter can be derived from the discrete filter. However, mathematically speaking, the filtering
in continuous time is a more advanced problem than filtering in discrete time. Unlike the discrete case, the continuous
Kalman filter cannot be decomposed into separate time and measurement updates. This is due to the fact that all of the
error covariances in the discrete case tend to the same error covariance in limit. White noise also presents a problem as it
forces the filter to be formulated and solved using Itô differentials and Brownianmotion if certain precautions are not taken.
Since we only consider the linear case, we can avoid this issue. The filter for the continuous case is found in Table 2.

Despite their differences, both filters look strikingly similar. When seeking to unify and extend the Kalman filter to
dynamic equations, the following assumptions have been made.

Assumption 1.1. Throughout the paper, we assume the following.

a. The true state and state estimate belong to the same time scale.
b. The state and measurements are Gaussian.
c. The state measurement is being updated in ‘‘real-time’’. In other words, there is a measurement at the next available

point in the time scale.
d. The error covariance of our hybrid filter is found through the integrator just as it is for the Kalman–Bucy filter.
e. There exists a term δ(·, ·) such that tf

t0

 tf

t0
xT (τ1)Q δ(τ1, τ2)x(τ2)∆τ1∆τ2 =

 tf

t0
xT (τ )Qx(τ )∆τ . (1)

Note that (1) is valid for isolated time scales as well as the reals with δ being the usual Dirac delta. Table 3 summarizes
our results.
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Table 3
The dynamic Kalman filter.

System: x∆(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0
Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0,Q δ(t, s)), v ∼ (0, Rδ(t, s)), which are mutually uncorrelated, R > 0

Initialization
Initial estimate: x̂(t0) = x0
Error covariance: P(t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:
x̂∆(t) = Ax̂(t) + Bu(t) + K(t)[y(t) − Cx̂(t)]

Kalman gain: K(t) = (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1

Error covariance update:
P∆(t) = AP(t) + (I + µ(t)A)P(t)AT

+ GQGT
− (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1CP(t)(I + µ(t)AT )

Table 4
Examples of time scales.

T µ(t) σ (t)

R 0 t
Z 1 t + 1
hZ h t + h
qZ (q − 1)t qt
N2

0 1 + 2
√
t

√
t + 1

2
T = {Hn}

1
n+1 Hn+1

Pa,b


0, t ∈


∞

k=0
[kc, kc + a)

b, t ∈


∞

k=0
{kc + a},


t, t ∈


∞

k=0
[kc, kc + a)

t + b, t ∈


∞

k=0
{kc + a}

where c = a + b

Over the years, the Kalman filter has proven to be a useful mathematical tool mainly for the simplicity of its design.
While the Kalman filter is most famous for its role in putting a man on the moon, it has numerous other useful applications
in engineering and analysis of economic systems (see [1,2]) as well. There has also been interest in comparing discrete
with continuous measurements when the filter design is given as a continuous process [11,19,23]. Applications here
include biomechanical models, particularly for cardiac kinetics estimation. Such filters are sometimes called ‘‘hybrid’’ filters,
although this term is generic. Despite its various incarnations, each filter design looks remarkably like Kalman’s original
filter.

The paper is organized as follows. In Section 2, we offer some basic properties of calculus on time scales. We also review
our results for the linear quadratic regulator (LQR) [5] when the final state is free. In Section 3, we extend and unify the
Kalman filter to dynamic equations on time scales. Finally, in Section 4, we examine the relationship between the LQR and
the Kalman filter. This work is from the second author’s dissertation [22].

2. Preliminaries

In this section, we provide a brief introduction to the theory of dynamic equations on time scales. For a more in-depth
study of time scales, see Bohner and Peterson’s books [3,4].

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real numbers. We let Tκ
= T \ {maxT} if maxT

exists; otherwise Tκ
= T.

Example 2.2. Some examples of time scales include T = R, T = Z, T = hZ for h > 0, the quantum numbers
T = qZ = {qk : k ∈ Z} ∪ {0} for q > 1, T = Pa,b =


∞

k=0[k(a + b), k(a + b) + a], for a, b > 0, the so-called harmonic
numbers T = {Hn : n ∈ N0} where H0 = 0 and Hn =

n
k=1

1
k , and the Cantor set.

Definition 2.3. We define the forward jump operator σ : T → T and the graininess function µ : T → [0, ∞) by

σ(t) := inf {s ∈ T : s > t} and µ(t) := σ(t) − t.

For any function f : T → R, we define the function f σ
: T → R by f σ

= f ◦ σ .

In Table 4, we give the forward jump operators and the graininess functions for some common time scales.
Next, we define the delta (or Hilger) derivative as follows.
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Definition 2.4. Assume f : T → R and let t ∈ Tκ . The delta derivative f ∆(t) is the number (when it exists) such that given
any ε > 0, there is a neighborhood U of t such that[f (σ (t)) − f (s)] − f ∆(t)[σ(t) − s]

 ≤ ε|σ(t) − s| for all s ∈ U .

In the next two theorems, we consider some properties of the delta derivative.

Theorem 2.5 (See [3, Theorem 1.16]). Let f : T → R be a function and t ∈ Tκ . Then we have the following.

a. If f is differentiable at t, then f is continuous at t.
b. If f is continuous at t, where t is right-scattered, then f is differentiable at t and

f ∆(t) =
f (σ (t)) − f (t)

µ(t)
.

c. If f is differentiable at t, where t is right-dense, then

f ∆(t) = lim
s→t

f (t) − f (s)
t − s

.

d. If f is differentiable at t, then

f (σ (t)) = f (t) + µ(t)f ∆(t). (2)

Note that (2) is sometimes called the ‘‘simple useful formula’’.

Example 2.6. Note the following examples.

a. When T = R, then (if the limit exists)

f ∆(t) = lim
s→t

f (t) − f (s)
t − s

= f ′(t).

b. When T = Z, then

f ∆(t) = f (t + 1) − f (t) =: ∆f (t).

c. When T = hZ for h > 0, then

f ∆(t) =
f (t + h) − f (t)

h
=: ∆hf (t).

d. When T = qZ for q > 1, then

f ∆(t) =
f (qt) − f (t)

(q − 1)t
=: Dqf (t).

Next we consider the linearity property as well as the product rules.

Theorem 2.7 (See [3, Theorem 1.20]). Let f , g : T → R be differentiable at t ∈ Tκ . Then we have the following.

a. For any constants α and β , the sum (αf + βg) : T → R is differentiable at t with

(αf + βg)∆(t) = αf ∆(t) + βg∆(t).

b. The product fg : T → R is differentiable at t with

(fg)∆(t) = f ∆(t)g(t) + f σ (t)g∆(t) = f (t)g∆(t) + f ∆(t)gσ (t).

Definition 2.8. A function f : T → R is said to be rd-continuous onTwhen f is continuous in points t ∈ Twith σ(t) = t and
it has finite left-sided limits in points t ∈ T with sup {s ∈ T : s < t} = t . The class of rd-continuous functions f : T → R
is denoted by Crd = Crd(T) = Crd(T, R). The set of functions f : T → R that are differentiable and whose derivative is
rd-continuous is denoted by C1

rd.

Theorem 2.9 (See [3, Theorem 1.74]). Any rd-continuous function f : T → R has an antiderivative F , i.e., F∆
= f on Tκ .

Definition 2.10. Let f ∈ Crd and let F be any function such that F∆(t) = f (t) for all t ∈ Tκ . Then the Cauchy integral of f is
defined by b

a
f (t)∆t = F(b) − F(a) for all a, b ∈ T.
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Example 2.11. Let a, b ∈ T with a < b and assume that f ∈ Crd.

a. When T = R, then b

a
f (t)∆t =

 b

a
f (t)dt.

b. When T = Z, then b

a
f (t)∆t =

b−1
t=a

f (t).

c. When T = hZ for h > 0, then b

a
f (t)∆t = h

b/h−1
t=a/h

f (th).

d. When T = qN0 for q > 1, then b

a
f (t)∆t =

 b

a
f (t)dq(t) := (q − 1)


t∈[a,b)∩T

tf (t).

Definition 2.12. An m × n matrix-valued function A on T is rd-continuous if each of its entries are rd-continuous.
Furthermore, ifm = n, A is said to be regressive (we write A ∈ R) if

I + µ(t)A(t) is invertible for all t ∈ Tκ ,

where I is the identity matrix.

Theorem 2.13 (See [3, Theorem 5.8]). Suppose that A is regressive and rd-continuous. Then the initial value problem

X∆(t) = A(t)X(t), X(t0) = I

has a unique n × n matrix-valued solution X.

Next, we present the matrix exponential and some of its properties.

Definition 2.14. The solution X from Theorem2.13 is called thematrix exponential function onT and is denoted by eA(·, t0).

Theorem 2.15 (See [3, Theorem 5.21]). Let A be regressive and rd-continuous. Then for r, s, t ∈ T,
a. eA(t, s)eA(s, r) = eA(t, r),
b. eA(σ (t), s) = (I + µ(t)A(t))eA(t, s),
c. eA(t, σ (s)) = eA(t, s)(I + µ(s)A)−1,
d. (eA(·, s))∆

= AeA(·, s),
e. (eA(t, ·))∆

= −eσ
A (t, ·)A = eA(t, ·)(I + µ(s)A)−1A.

Next we give the solution to our linear system using variation of parameters.

Theorem 2.16 (See [3, Theorem 5.24]). Let A ∈ R be an n × n matrix-valued function on T and suppose that f : T → Rn is
rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the solution of the initial value problem

x∆(t) = A(t)x(t) + f (t), x(t0) = x0

is given by

x(t) = eA(t, t0)x0 +

 t

t0
eA(t, σ (τ ))f (τ )∆τ .

Here, we review our results regarding the linear quadratic regulator generalized to dynamic equations on time scales [5].
We considered the linear system

x∆(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(3)

associated with the quadratic performance index

J =
1
2
xT (tf)Fx(tf) +

1
2

 tf

t0
(xTQx + uTRu)(τ )∆τ , (4)
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where F ,Q ≥ 0 and R > 0. Then a necessary condition for a minimum cost is that x, λ, u satisfy the state, costate, and
stationary equations

x∆
= Ax − BR−1BTλσ , (5a)

−λ∆
= Qx + ATλσ , (5b)

u = −R−1BTλσ . (5c)
In the free final state case, we make the assumption that x and λ satisfy the linear relationship

λ(t) = S(t)x(t), (6)
where S represents a solution to a Riccati equation

− S∆
= AT Sσ

+ (I + µAT )SσA − (I + µAT )SσB(R + µBT SσB)−1BT Sσ (I + µA) + Q (7)
with S(tf) = F . This condition (6) is called a ‘‘sweep condition’’, a term used by Bryson and Ho in [10].

Next, we offer the form of an optimal control in the free final state case.

Theorem 2.17 (See [5, Theorem 6.10]). Let R + µBT SσB be invertible. Suppose that x, u, and λ solve (5) such that (6) holds.
Then

u(t) = −L(t)x(t),

where the matrix-valued function L represents the state feedback gain

L(t) = (R + µ(t)BT Sσ (t)B)−1BT Sσ (t)(I + µ(t)A). (8)

It was assumed in this paper that the state can be accurately measured. However, this is not always realistic. In the next
section, we construct a system that estimates the state, an observer. This concept was first introduced in the discrete and
continuous cases by Luenberger [17]. This leads us to the generalization of the Kalman filter on time scales. As such, the
Kalman filter can be thought of as an observer in which the state is reconstructed from noisy measurements.

3. The Kalman filter

In this section, we provide additional background and assumptions to unify and extend the Kalman filter to time scales.
Since the goal of the filter is to minimize themean square error, it is also referred to as the Linear Quadratic Estimator (LQE).

Assumption 3.1. Throughout this paper, we consider the linear stochastic system

x∆(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0,
y(t) = Cx(t) + v(t),

(9)

where the following assumptions have been made.
a. The state x ∈ Rn is a nonstationary random variable with mean x and covariance Px = E[(x − x)(x − x)T ].
b. The input u ∈ Rm is deterministic.
c. The output y ∈ Rp is a nonstationary random variable with mean y and covariance Py = E[(y − y)(y − y)T ].
d. The process noise w ∈ Rl is stationary white noise with mean 0 and covariance E[w(t)wT (s)] = Q δ(t, s).
e. The measurement noise v ∈ Rp is stationary white noise with mean 0 and covariance E[v(t)vT (s)] = Rδ(t, s).
f. x0, w, and v are assumed to be mutually uncorrelated.
g. P(t0) = P0,Q , and R are all positive definite.
h. We can interchange the expectation and integration operations, i.e.,

E


Z(τ )∆τ


=


E[Z(τ )]∆τ .

Remark 3.2. Note that Assumption 3.1h is used throughout the paper to bring the expectation inside the integral (e.g., in the
proofs of Corollary 3.7, Theorems 3.8 and 3.13). This is with the understanding that the integral


E[Z(τ )]∆τ exists on the

given time scale. This assumption is valid for the reals and isolated time scales. Since no research has been done to establish
conditions that ensure this equality holds for a general time scale, we have made this assumption as a precaution.

For convenience, we consider the time-invariant case. However, our results are also valid for the time-varying case.

3.1. Propagation of means and variances

Definition 3.3. A random vector is said to be stationary if all of its statistical properties do not vary with time. Processes
whose statistical properties do change are referred to as nonstationary.

The type of stationary processes we consider is white noise, which we define as follows.
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Definition 3.4. A random vector v is said to be a white noise random vector if and only if

a. E(v(t)) = 0;
b. E(v(t)vT (s)) = Rδ(t, s).

Next, we consider the situation when two vectors are orthogonal to each other.

Definition 3.5. Two vector-valued functions w, v : T → Rm are said to be mutually uncorrelated if

E[w(t)vT (s)] = 0 for all s, t ∈ T.

Theorem 3.6 (See [3, Theorem 5.24]). The solution of the initial value problem

x∆(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0 (10)

is given by

x(t) = eA(t, t0)x0 +

 t

t0
eA(t, σ (τ ))Bu(τ )∆τ +

 t

t0
eA(t, σ (τ ))Gw(τ)∆τ .

Proof. The result is due to Theorem 2.16. �

Corollary 3.7. The mean of the solution for (10) is given by

x(t) = eA(t, t0)x0 +

 t

t0
eA(t, σ (τ ))Bu(τ )∆τ , (11)

and the difference between the solution of (10) and its mean is given by

x(t) − x(t) = eA(t, t0)(x0 − x0) +

 t

t0
eA(t, σ (τ ))Gw(τ)∆τ . (12)

Proof. First, using Theorem 3.6 and Assumption 3.1a, b, d, and h, we have

E [x(t)] = E

eA(t, t0)x0 +

 t

t0
eA(t, σ (τ ))Bu(τ )∆τ +

 t

t0
eA(t, σ (τ ))Gw(τ)∆τ


= eA(t, t0)x0 +

 t

t0
E [eA(t, σ (τ ))Bu(τ )]∆τ +

 t

t0
E [eA(t, σ (τ ))Gw(τ)]∆τ

= eA(t, t0)x0 +

 t

t0
eA(t, σ (τ ))Bu(τ )∆τ .

Then taking the difference between the solution of (10) and (11), we have (12) as desired. �

Theorem 3.8. The covariance of the solution of (10) is given by

P(t) = eA(t, t0)

P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ


eTA(t, t0). (13)

Proof. Using the definition of covariance, Corollary 3.7, and Assumption 3.1a, b, d, and h, we have

P(t) = E[(x(t) − x(t))(x(t) − x(t))T ]

= E

eA(t, t0)(x0 − x0)(x0 − x0)T eTA(t, t0)


+ E


eA(t, t0)(x0 − x0)

 t

t0
wT (τ )GT eTA(t, σ (τ ))∆τ


+ E

 t

t0
eA(t, σ (τ ))Gw(τ)(x0 − x0)T eTA(t, t0)∆τ


+ E

 t

t0

 t

t0
eA(t, σ (τ1))Gw(τ1)w

T (τ2)GT eTA(t, σ (τ2))∆τ1∆τ2


= eA(t, t0)P0eTA(t, t0) +

 t

t0

 t

t0
eA(t, σ (τ1))GQ δ(τ2, τ1)GT eTA(t, σ (τ2))∆τ1∆τ2

= eA(t, t0)

P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ


eTA(t, t0).

This shows (13) as desired. �
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Note that themean and covariance of the state should actually be considered as conditional. Nextwe find the propagation
of the state covariance matrix.

Corollary 3.9. The propagation of the covariance of the solution of (10) is given by

P∆(t) = AP(t) + (I + µ(t)A)P(t)AT
+ GQGT . (14)

Proof. Using Theorems 2.7b and 2.15, we differentiate (13) to get

P∆(t) =


eA(t, t0)


P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ

∆

eTA(σ (t), t0)

+ eA(t, t0)

P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ


(e∆

A (t, t0))T

= eA(σ (t), t0)eA(t0, σ (t))GQGT eTA(t0, σ (t))eTA(σ (t), t0)

+ AeA(t, t0)

P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ


eTA(t, t0)(I + µ(t)A)T

+ eA(t, t0)

P0 +

 t

t0
eA(t0, σ (τ ))GQGT eTA(t0, σ (τ ))∆τ


eTA(t, t0)A

T

= AP(t)(I + µ(t)A)T + P(t)AT
+ GQGT .

This shows (14) and concludes the proof. �

3.2. The linear quadratic estimator

While the initial state is not known, we do assume that the statistics are known. Here we assume that x0 has mean x0
and covariance P0, where P0 is given by

P0 = E[(x(t0) − x̂(t0))(x(t0) − x̂(t0))T ].

The goal of the filter is to determine a state x̂ such that our observer is unbiased. Therefore it is a natural assumption to pick
the initial state estimate to be x̂(t0) = x(t0). This is referred to as the initialization of the filter.

Definition 3.10. Let the linear stochastic system be given by (9). Then the state estimate, x̂, to (9) is given by the observer
equation

x̂∆(t) = Ax̂(t) + Bu(t) + K(t)[y(t) − Cx̂(t)], x̂(t0) = x(t0), (15)

where K represents the Kalman gain.

We derive the form of this gain later on in this section. Now since x̂ is the state estimate, we can call ŷ = Cx̂ the output
estimate. Just as we desire x̂ to be close to x, our observer is working properly if y − ŷ is made to be small. This difference is
sometimes called the residual or output estimation error. The observer (15) can be thought as the measurement update of
our state equation. As mentioned before, we assume that this measurement is being updated in real-time. Thus, the Kalman
gain can be thought of as a ‘‘blending’’ factor that fuses the residual with the state estimate. A block diagram of the filter
design is found in Fig. 1.

Lemma 3.11. If x satisfies (9) and x̂ solves (15), the state error x̃ = x − x̂ satisfies

x̃∆(t) = M(t)x̃(t) + Gw(t) − K(t)v(t), (16)

where M(t) = A − K(t)C.

Proof. Taking the difference of (9) and (15), we have

x̃∆(t) = x∆(t) − x̂∆(t)
= (A − K(t)C)x̃(t) + Gw(t) − K(t)v(t)
= M(t)x̃(t) + Gw(t) − K(t)v(t).

This gives (16) as desired. �
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Fig. 1. Kalman filter design.

Remark 3.12. Note that by Theorem 2.16, the solution to (16) is of the form

x̃(t) = eM(t, t0)x̃0 +

 t

t0
eM(t, σ (τ ))[Gw(τ) − K(τ )v(τ )]∆τ . (17)

Next, we provide the error covariance.

Theorem 3.13. The covariance of the solution of (16) is given by

P(t) = eM(t, t0)

P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ


eTM(t, t0). (18)

Proof. Expanding the definition of the error covariance and using Assumption 3.1a and d–h, we have

P(t) = E

x̃(t)x̃T (t)


= E


eM(t, t0)x̃0x̃T0e

T
M(t, t0)


+ E


eM(t, t0)x̃0

 t

t0
[wT (τ )GT

− vT (τ )K T (τ )]eTM(t, σ (τ ))∆τ


+ E

 t

t0
eM(t, σ (τ ))[Gw(τ) − K(τ )v(τ )]x̃T0e

T
M(t, t0)∆τ


+ E

 t

t0

 t

t0
eM(t, σ (τ1))[Gw − Kv](τ1)[w

TGT
− vTK T

](τ2) × eTM(t, σ (τ2))∆τ1∆τ2


= eM(t, t0)P0eTM(t, t0) +

 t

t0
eM(t, σ (τ ))GQGT eTM(t, σ (τ ))∆τ +

 t

t0
eM(t, σ (τ ))K(τ )RK T (τ )eTM(t, σ (τ ))∆τ

= eM(t, t0)

P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ


eTM(t, t0).

This shows (18) and concludes the proof. �



428 M. Bohner, N. Wintz / J. Math. Anal. Appl. 406 (2013) 419–436

Now, we present the propagation of the error covariance.

Corollary 3.14. Let P be given by (18). Then P satisfies

P∆
= AP + (I + µA)PAT

+ K [R + µCPCT
]K T

− K [CP + µCPAT
] − [µAPCT

+ PCT
]K T

+ GQGT . (19)

Proof. Using Theorems 2.7b and 2.15, we differentiate the error covariance (18) to get

P∆(t) =


eM(t, t0)


P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ

∆

eTM(σ (t), t0)

+ eM(t, t0)

P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ


(e∆

M(t, t0))T

= eM(σ (t), t0)eM(t0, σ (t))[GQGT
+ K(t)RK T (t)]eTM(t0, σ (t))eTM(σ (t), t0)

+M(t)eM(t, t0)

P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ


eTM(t, t0)(I + µ(t)M(t))T

+ eM(t, t0)

P0 +

 t

t0
eM(t0, σ (τ ))GQGT eTM(t0, σ (τ ))∆τ

+

 t

t0
eM(t0, σ (τ ))K(τ )RK T (τ )eTM(t0, σ (τ ))∆τ


eTM(t, t0)MT (t)

= M(t)P(t)(I + µ(t)M(t))T + P(t)MT (t) + K(t)RK T (t) + GQGT

= (A − K(t)C)P(t)(I + µ(t)(A − K(t)C))T + P(t)(A − K(t)C)T + K(t)RK T (t) + GQGT

= AP(t) + (I + µ(t)A)P(t)AT
+ K(t)[R + µ(t)CP(t)CT

]K T (t)
− K(t)CP(t)[I + µ(t)AT

] − [I + µ(t)A]P(t)CTK T (t) + GQGT .

This gives us (19) as desired. �

Remark 3.15. In this remark, we find the ‘‘correct’’ form of the Kalman gain using a technique similar to the one found by
Sorenson [20] and Brown [9] for the discrete case. First note that the term

K(t)CP(t)[I + µ(t)AT
] + [I + µ(t)A]P(t)CTK T (t)

is linear in K(t)while K(t)[R+µ(t)CP(t)CT
]K T (t) is quadratic in K(t). Now assume that R+µ(t)CP(t)CT is positive definite.

Thus there exists an invertible matrix D(t) such that

D(t)DT (t) = R + µ(t)CP(t)CT .

Then (19) can be rewritten as

P∆(t) = AP(t) + (I + µ(t)A)P(t)AT
+ K(t)D(t)DT (t)K T (t)

− K(t)CP(t)[I + µ(t)AT
] − [I + µ(t)A]P(t)CTK T (t) + GQGT

= AP(t) + (I + µ(t)A)P(t)AT
+ (K(t)D(t) − N(t))(K(t)D(t) − N(t))T − N(t)NT (t) + GQGT (20)

provided that

[KCP(I + µAT )](t) + [(I + µA)PCTK T
](t) = (KDNT )(t) + (NDTK T )(t),

which holds if

N(t) = (I + µ(t)A)P(t)CT (DT (t))−1.

Then to minimize the diagonal terms of P∆(t), we want the middle terms of (20) to be zero. Setting

K(t)D(t) = N(t),
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we get

K(t) = N(t)D−1(t)
= (I + µ(t)A)P(t)CT (DT (t))−1D−1(t)
= (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1.

Definition 3.16. Assume that R + µCPCT > 0. Then we define the Kalman gain by

K(t) = (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1. (21)

Now that our Kalman gain is in the form (21), it is possible to write our error propagation as a Riccati equation.

Theorem 3.17. Assume that R + µCPCT > 0 and define K by (21). Then P solves (19) if and only if

P∆
= AP + (I + µA)PAT

− (I + µA)PCT (R + µCPCT )−1CP(I + µAT ) + GQGT . (22)

Proof. Plugging (21) into (19), we get

P∆(t) = AP(t) + (I + µ(t)A)P(t)AT
+ (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1(R + µ(t)CP(t)CT )K T (t)

− (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1CP(t)(I + µ(t)AT ) − (I + µ(t)A)P(t)CTK T (t) + GQGT

= AP(t) + (I + µ(t)A)P(t)AT
− (I + µ(t)A)P(t)CT (R + µ(t)CP(t)CT )−1CP(t)(I + µ(t)AT ) + GQGT .

This gives us (22) as desired. �

Note that the term −(I + µA)PCT (R + µCPCT )−1CP(I + µAT ) represents the decrease in P due to measurement. We
illustrate this in the following example.

Example 3.18. Assume that C = 0 such that there are no measurements. Then the propagation of the error covariance of
the linear stochastic system

x∆
= Ax + Bu + Gw

is given by

P∆
= AP + (I + µA)PAT

+ GQGT .

Since there are no measurements, the observer equation becomes

x̂∆
= Ax̂ + Bu.

Therefore the estimator propagates according to the deterministic version of the system. Next defineW (t) = E(x(t)xT (t)).
Now assume that u = 0. Then the optimal estimate is given as x̂ = x. Now it follows that

P = E[(x − x)(x − x)T ] = W − xxT ,

such that

P∆
= W∆

− x∆xT − xσ x∆T

= W∆
− AxxT − (I + µA)x(Ax)T

= W∆
− AW − (I + µA)WAT .

Now comparing equations, we have

W∆
= AW + (I + µA)WAT

+ GQGT . (23)

Thus, with no measurement and under a deterministic input,W and P must satisfy the same Lyapunov equation.

Example 3.19. Consider the scalar stochastic system

x∆(t) = ax(t) + bu(t) + gw(t), x(t0) = x0,
y(t) = cx(t) + v(t).

The solution to the state equation is given by

x(t) = ea(t, t0)x0 +

 t

t0
ea(t, σ (τ ))(bu + gw)(τ)∆τ .
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Then the covariance is written as

p(t) = E[(x(t) − x(t))2]

= E


ea(t, t0)(x0 − x0) +

 t

t0
ea(t, σ (τ ))gw(τ)∆τ

2


= E

(ea(t, t0)(x0 − x0))2


+ E

 t

t0

 t

t0
ea(t, σ (τ1))g2w(τ1)w(τ2)ea(t, σ (τ2))∆τ1∆τ2


= e2a(t, t0)p0 + e2a(t, t0)

 t

t0
e2a(t0, σ (τ ))g2q(τ )∆τ

= e2⊙a(t, t0)

p0 +

 t

t0
e2⊙a(t0, σ (τ ))g2q(τ )∆τ


,

where 2 ⊙ a = 2a + µa2. As a result, the propagation of the covariance can be found to be

p∆(t) = e∆
2⊙a(t, t0)


p0 +

 t

t0
e2⊙a(t0, σ (τ ))g2q(τ )∆τ


+ e2⊙a(σ (t), t0)


p0 +

 t

t0
e2⊙a(t0, σ (τ ))g2q(τ )∆τ

∆

= (2 ⊙ a)(t)e2⊙a(t, t0)

p0 +

 t

t0
e2⊙a(t0, σ (τ ))g2q(τ )∆τ


+ e2⊙a(σ (t), t0)e2⊙a(t0, σ (τ ))g2q

= (2 ⊙ a)(t)p(t) + g2q.

Next, we estimate our state equation with the observer

x̂∆(t) = ax̂(t) + bu(t) + k(t)[cy(t) − cx̂(t)], x̂(t0) = x0.

In turn, we have the error system

x̃∆(t) = (a − k(t)c)x̃(t) + gw − kv
= m(t)x̃(t) + gw − kv.

Then the error covariance can be written as

p(t) = E[x̃2(t)]

= E


em(t, t0)x̃0 +

 t

t0
em(t, σ (τ ))(gw − kv)(τ )∆τ

2


= E

(em(t, t0)x̃0)2


+ E

 t

t0

 t

t0
em(t, σ (τ1))g2w(τ1)w(τ2)em(t, σ (τ2))∆τ1∆τ2


+ E

 t

t0

 t

t0
em(t, σ (τ1))k2v(τ1)v(τ2)em(t, σ (τ2))∆τ1∆τ2


= e2m(t, t0)p0 + e2m(t, t0)

 t

t0
e2m(t0, σ (τ ))(g2q + k2r)(τ )∆τ

= e2⊙m(t, t0)

p0 +

 t

t0
e2⊙m(t0, σ (τ ))(g2q + k2r)(τ )∆τ


.

It follows that the propagation of the error covariance is found to be

p∆(t) = e∆
2⊙m(t, t0)


p0 +

 t

t0
e2⊙m(t0, σ (τ ))(g2q + k2r)(τ )∆τ


+ e2⊙m(σ (t), t0)


p0 +

 t

t0
e2⊙m(t0, σ (τ ))(g2q + k2r)(τ )∆τ

∆

= (2 ⊙ m)(t)e2⊙m(t, t0)

p0 +

 t

t0
e2⊙m(t0, σ (τ ))(g2q + k2r)(τ )∆τ


+ e2⊙m(σ (t), t0)e2⊙m(t0, σ (τ ))(g2q + k2r)(t)

= (2 ⊙ (a − ck))(t)p(t) + g2q + rk2(t)
= (2 ⊙ a)(t)p(t) − 2(1 + µ(t)a)cp(t)k(t) + (r + µ(t)c2p(t))k2(t) + g2q.
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Now completing the square, we have

p∆(t) = (2 ⊙ a)(t)p(t) + g2q −
(1 + µ(t)a)2

(r + µ(t)c2p(t))
(cp(t))2 + (r + µ(t)c2p(t))k2(t)

+ (r + µ(t)c2p(t))


−

2(1 + µ(t)a)cp(t)
(r + µ(t)c2p(t))

k(t) +


1 + µ(t)a

r + µ(t)c2p(t)

2

(cp(t))2


= (2 ⊙ a)(t)p(t) + g2q −
(1 + µ(t)a)2

(r + µ(t)c2p(t))
(cp(t))2 +


k(t) −

(1 + µ(t)a)cp(t)
(r + µ(t)c2p(t))

2

.

To zero out the last term, we set (see (20))

k(t) =
(1 + µ(t)a)cp(t)
(r + µ(t)c2p(t))

.

Finally, we can write the dynamic equation for p as a Riccati equation (see (22)) as

p∆(t) = (2 ⊙ a)(t)p(t) −
(1 + µ(t)a)2

(r + µ(t)c2p(t))
(cp(t))2 + g2q.

Next, we consider a simple numerical example.

Example 3.20. Consider the spring–mass system
x1
x2

∆

=


0 1

−1 −2

 
x1
x2


+


0
1


w,

y =

1 0

 
x1
x2


+ v,

where x1 represents the position of an object, x2 is its velocity, y is the measurement, w ∼ N(0, 1) is the process noise, and
v ∼ N(0, 2) represents the measurement noise. The initial estimate for position is 1 ft below equilibrium position while
the initial velocity is estimated to be 1 ft/s. In applying the Kalman filter, it is assumed that the measurements are Gaussian
with variances σ 2

x1 = 2 and σ 2
x2 = 3. As a result, we can initialize our filter by assuming that

x̂0 = x0 =


1
1


,

P0 =


2 0
0 3


.

For convenience, we consider only time scales with bounded graininess, where it is assumed that the time scale is known a
priori. In estimating the object’s true position,we implemented our filter for 15 iterations. Note that since theRiccati equation
and gain do not depend on the current state, these equations can be pre-computed and stored offline. In the first three cases,
weuse the same time scale throughout the entire iteration (T = 2Z, T = {Hn}, andT = P1,2, respectively). In the fourth case,
we let T = 2Z for t ≤ 8 and T = {Hn} for t > 8. As a result, the Riccati and estimator equations are alteredmidway through
the implementation of the filter. It follows that the gain is also changed as the time scale changes. This is an example of a
useful engineering technique called gain scheduling. In Fig. 2, we plot the true position, measurement, and position estimate
as well as the error for each case. Note that the absolute value in the error appears to be bounded in each case.

4. A comparison of the LQR and Kalman filter

In this section, we establish amathematical relationship between the LQR and Kalman filter on time scales. First note the
Riccati equation and Kalman gain for the LQR as given in (7) and (8), respectively. These equations are in factmathematically
dual to the Riccati equation (22) and gain (21) associated with the Kalman filter, preserving the dual relationship between
the LQR and the Kalman filter in their unification. Intuitively, we can see that both mirror two concepts we have shown are
dual in [7]. The LQR mirrors the concept of controllability in that we are seeking an optimal control such that some cost
function is minimized. Similarly, the Kalman filter mirrors the concepts of observability in that we are seeking an optimal
estimate based on previously observed measurements. A comparison of the Riccati equations and gains is given in Table 5.

Finally, we show that when the final time tf is fixed, the optimal estimator associated with

x∆(t) = Ax(t) + Gw(t), x(t0) = x0,
y(t) = Cx(t) + v(t)

(24)
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(a) Case 1: position estimate when T = 2Z. (b) Case 1: error when T = 2Z.

(c) Case 2: position estimate when T = {Hn}. (d) Case 2: error when T = {Hn}.

Fig. 2. Kalman filter schemes to estimate position.

Table 5
A comparison of the LQR and Kalman filter.

LQR Kalman filter

−S∆(t) P∆(t)
Sσ (t) P(t)
AT A
BT C
R > 0 R > 0
Q GQGT

can be rewritten as an optimal regulator process. Now in estimating x(tf), wewant to find a numberβ from themeasurement
such that

J := E[(αT x(tf) − β)2],

is a minimum, where α is some constant vector. We refer to β as the minimum variance estimate of αT x(tf). Note that since
all random variables of (24) are assumed to be Gaussian, we can derive β from linear operations of y. In other words, we
assume that there exists some function s(·; α, tf) for [t0, tf] such that

β =

 tf

t0
sT (τ ; α, tf)y(τ )∆τ . (25)
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(e) Case 3: position estimate when T = P1,2 . (f) Case 3: error when T = P1,2 .

(g) Case 4: position estimate when T = 2Z for t ≤ 8 and T = {Hn} for
t > 8.

(h) Case 4: error when T = 2Z for t ≤ 8 and T = {Hn} for t > 8.

Fig. 2. (continued)

Now plugging in (25), we can show that

J = E


αT x(tf) −

 tf

t0
sT (τ ; α, tf)y(τ )∆τ

2


(26)

can be rewritten as the quadratic performance index. This brings us to our next theorem.

Theorem 4.1. Suppose that x and y solve (24) and define J by (26). If z ∈ Rn and s ∈ Rm solve the deterministic terminal value
problem

z∆(t) = −AT zσ (t) + CT s(t), z(tf) = α, (27)

then we have

J = zT (t0)P0z(t0) +

 tf

t0
[(zσ )TGQGT zσ

+ sTRs](τ )∆τ . (28)

Proof. First note that z is of the same dimension as x. Then using Theorem 2.7b, (24) and (27), we have

(zT x)∆
= (z∆)T x + (zσ )T x∆

= −(zσ )TAx + sTCx + (zσ )TAx + (zσ )TGw

= sTy − sTv + (zσ )TGw.



434 M. Bohner, N. Wintz / J. Math. Anal. Appl. 406 (2013) 419–436

Integrating both sides from t0 to tf, we have

zT (tf)x(tf) − zT (t0)x(t0) =

 tf

t0
sT (τ )y(τ )∆τ −

 tf

t0
sT (τ )v(τ )∆τ +

 tf

t0
(zσ )T (τ )Gw(τ)∆τ .

Now, rearranging terms we have

αT x(tf) −

 tf

t0
sT (τ )y(τ )∆τ = zT (t0)x(t0) −

 tf

t0
sT (τ )v(τ )∆τ +

 tf

t0
(zσ )T (τ )Gw(τ)∆τ .

Recalling that x0, w, v are mutually uncorrelated of each other by Assumption 3.1f, we can write

J = E


αT x(tf) −

 tf

t0
sT (τ ; α, tf)y(τ )∆τ

2


= E[(zT (t0)x(t0))2] + E

 tf

t0
sT (τ )v(τ )∆τ

2


+ E

 tf

t0
(zσ )T (τ )Gw(τ)∆τ

2


.

Next, we calculate the expectations of each term on the right-hand side separately. Thus,

E[(zT (t0)x(t0))2] = E[zT (t0)x(t0)xT (t0)z(t0)]
= zT (t0)E[x(t0)xT (t0)]z(t0)
= zT (t0)P0z(t0).

Also,

E

 tf

t0
sT (τ )v(τ )∆τ

2


= E
 tf

t0

 tf

t0
sT (τ1)v(τ1)v

T (τ2)s(τ2)∆τ1∆τ2


=

 tf

t0

 tf

t0
sT (τ1)E[v(τ1)v

T (τ2)]s(τ2)∆τ1∆τ2

=

 tf

t0

 tf

t0
sT (τ1)Rδ(τ1, τ2)s(τ2)∆τ1∆τ2

=

 tf

t0
sT (τ )Rs(τ )∆τ .

Similarly,

E

 tf

t0
(zσ )T (τ )Gw(τ)∆τ

2


=

 tf

t0
(zσ )T (τ )GQGT zσ (τ )∆τ .

Hence (28) holds. �

Note that all of the terms on the right-hand side of (28) are deterministic. Then as a regulator problem, the goal would be
to determine an optimal control s such that (28) is minimized. Unlike (3), (27) is associated with a quadratic cost functional
with initial weighting function rather than a terminal weighting function. This is due to the fact that the equations that
describe the optimal estimator operate ‘‘forward in time’’, whereas the equations that describe the optimal regulator operate
‘‘backward in time’’.

Remark 4.2. Now that the LQR and LQE problems have been unified and extended to dynamic equations on time scales,
we can introduce another fundamental problem in optimal control. The linear quadratic Gaussian (LQG) problem concerns
stochastic linear systems disturbed by white noise, corrupted measurements of the state, and associated with a quadratic
cost function. This problem is essentially a combination of the LQR and LQE. Consider the linear system

x∆(t) = Ax(t) + Bu(t) + Gw(t), x(t0) = x0,
y(t) = Cx(t) + v(t),

associated with the cost functional

J = E

1
2
xT (tf)Fx(tf) +

1
2

 tf

t0
(xTMx + uTNu)(τ )∆τ


, (29)
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where F ,M ≥ 0 and N > 0 and Assumption 3.1a–h are assumed. The control objective then is to find an optimal control
that minimizes (29). Next we introduce the controller equations

x̂∆(t) = Ax̂(t) + Bu(t) + K(t)[y(t) − Cx̂(t)], x̂(t0) = x0
u(t) = −L(t)x̂(t).

(30)

Now using the state-estimate feedback in (30), the closed-loop can be written as

x∆(t) = Ax(t) − BL(t)x̂(t) + Gw(t)
= (A − BL(t))x(t) + BL(t)x̃(t) + Gw(t).

Similarly, the error system is as given in (16). Then the closed-loop dynamics can be described by the system
x
x̃

∆

(t) =


A − BL(t) BL(t)

0 A − K(t)C

 
x
x̃


(t). (31)

The system (31) describes the separability principle of the LQR and the Kalman filter. As a result, the Kalman filter and
LQR can be designed and computed independent of each other. Now the Kalman filter estimates the state based previous
measurements and is associated with the Riccati equation

P∆
= AP + (I + µA)PAT

− (I + µA)PCT (R + µCPCT )−1CP(I + µAT ) + GQGT ,

P(t0) = P0.

Using the solution P , the Kalman gain is given by (21). Similarly, the Riccati equation that solves the LQR problem is given by

−S∆
= AT Sσ

+ (I + µAT )SσA − (I + µAT )SσB(N + µBT SσB)−1BT Sσ (I + µA) + M,

S(tf) = F .

As a result, the feedback gain becomes

L = (N + µBT SσB)−1BT Sσ (I + µA).

5. Future plans

In the numerical example provided, we implemented our filter when the system was exponentially stable and the
graininesswas bounded. Fromour results,we saw that the error could be bounded.However, findingnecessary and sufficient
conditions that ensure that the error is bounded remains an ongoing project.

Throughout this paper, we considered an initial state that was corrupted or missing data. However, it is possible that no
information is known about the initial state. It is also possible that the dimension of the measurement is large compared to
that of the process noise. As a result, initial error covariance can be infinitely large. To side-step this issue in the discrete and
continuous cases, the inverse of the error covariance is used instead. To this end, we are extending our results to generalize
the so-called information filter. In turn, these results can be used to generalize an optimal smoother on time scales.

It is also our intention to study other variations of our generalized filter. Namely, we are interested in extending our
results to nonlinear dynamic systems. For the discrete and continuous cases, such a filter is called an extended Kalman
filter. Here, the filter design is derived using Itô differentials and Brownian motion. In this setting, the underlying system
can be estimated by an observer with either discrete or continuousmeasurements. As a result, it may be possible to estimate
the true state when the system studied and the observer are on two different time scales.
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